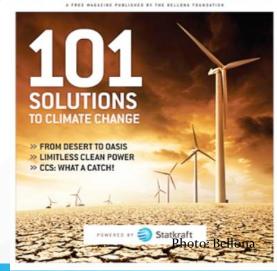
Ongoing macroalgae projects in Norway

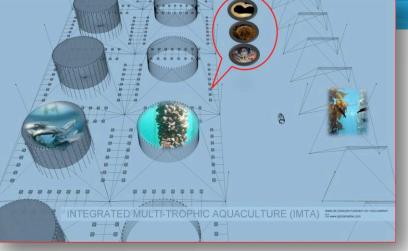
Algae Conference Bodø 2012

Anne Lise Leonczek Bellona



From Pollution to Solution

BELLONA


How does Bellona work?

Bellona offices and representatives

Integrated Multitrophic Aquaculture

Madagascar Algae Project

Sahara Forest Project

Why cultivate algae in Norway?

- Norway has a long coastline and good natural conditions for Aquaculture
- We already have an infrastructure for receiving, transporting and processing seaweed
- There is a large, untapped potential in marine raw materials and there are many exciting new opportunities

Large potential for raw products

- Algae has a huge potential to produce:
 - Employment
 - Food for humans and animals
 - o Omega 3
 - o Medicine
 - o Bioenergy
 - Other products

Large product diversity!

On-going macroalgae projects in Norway

- No commercial cultivation of macro algae in Norway
- Small number of pilot projects
- Few Research projects

The ECORAIS Project 2009-2012

Cultivate: Saccharina latissima, Palmaria palmata

Hardangerfjorden

Use of results: Describe ecosystem responses to aquaculture induced stress, evaluate algae as bioindicator for waste discharges

Partners: IMR-Institute of Marine Research, NIVA-Norwegian Institute for Water Research, UniResearch

Financed by: The Research Council of Norway

Photo: Linda Skryseth, NIVA

Macroalgae Project in Solund, Sognesjøen

Cultivate: Saccharina latissima, Laminaria hyperborea and Laminaria digitata

Outside a fish farm in Sognesjøen

Use of results: To utilise protein

Partners: Salmon Group, Sulefisk, Hortimare and Innovasjon Norge

Photo Øyvind Kråkås

From biomass to biogas – an integrated approach towards sustainable recovery of energy and nutrients (2009-2013)

Cultivate Saccharina latissima. (Seaweed only small part of the project)

Frøya Taraskjæret, Frøya Hammarvik, Beijan and Storfosna

Use of results: Energy and nutrition

Partners: Norwegian University of Life Sciences (UMB), CAMBI AS, and Seaweed Energy Solution AS (SES)

Financed by: Seaweed Energy Solution AS (SES), Hafslund, Cambi AS and The Research Council of Norway

SEAWEEDTECH – Development of technology for large scale seaweed cultivation (2011-2013)

Cultivate Saccharina latissima

Frøya Taraskjæret, Frøya Hammarvik, Beijan and Storfosna

Use of results: confidential project ("BIP")

Partners: SES, Aqualine, Winds Enterprises, Stolt Sea Farm, SINTEF Fisheries and Aquaculture, NTNU- Norwegian University of Science and Technology, CIIMAR-Centre for Marine and Environmental Research (Portugal)

Photo SES

Financed by: SES, Aqualine, Winds Enterprises, Stolt Sea Farm, Statoil and The Research Council of Norway

SEABREED – Industrial seedling production for large scale offshore cultivation process" (2011-2013)

Cultivate Saccharina latissima

Frøya Taraskjæret, Frøya Hammarvik, Beijan and Storfosna

Use of results: Confidential project ("BIP")

Partners: SES, Winds Enterprises, Stolt Sea Farm, SINTEF Fisheries and Aquaculture, NTNU- Norwegian University of Science and Technology, CIIMAR-Centre for Marine and Environmental Research (Portugal)

Financed by SES, Winds Enterprises, Stolt Sea Farm and The Research Council of Norway

Photo SES

EUROSTARS: SEAWEED-STAR Development of offshore cultivation of seaweed (2011-2013)

Cultivate Saccharina latissima

Frøya Taraskjæret, Frøya Hammarvik, Beijan and Storfosna

Use of results: Confidential project to be explored by SES and business partners

Partners: SES, Aqualine, Stolt Sea Farm, Winds Enterprises, SINTEF, NTNU- Norwegian University of Science and Technology and CIIMAR-Centre for Marine and Environmental Research (Portugal)

Financed by: SES, Aqualine, Stolt Sea Farm, Winds Enterprises, Eurostars (EU finding agency)

Photo SES

The DYMALYS project 2012-2014

Cultivate Saccharina latissima

Måkasteinen, Bakken, Gråtnes, outside the hatchery in the Lysefjord

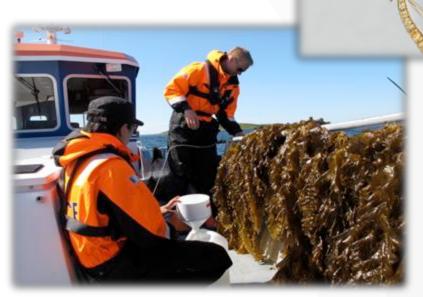
Partners: Lerøy, Bellona, Blue Planet, IVAR, Rogaland Forsk, Rogaland fylkeskommune, Biotec, Sylter Algenfarm, Lysefjorden Forskningsstasjon

Use of results: Biogas, human and animal food

Financed by: Lerøy, Rogaland Fylkeskommune, Ryfylkefondet

Photo Leonczek & Lerøy

Macrobiomass 2010-2012


Cultivate: Saccharina latissima and Alaria esculenta

Trøndelag, Fosna, Ørlandet and Rogaland

Partners: SINTEF Fisheries and Aquaculture, Sylter Algenfarm, Marifood, University of Oslo

Use of results: Bioetanol

Financed by: The Research Council of Norway and Natur og Næring

The EXPLOIT project 2012-2015

Cultivate: Saccharina latissima

Outside a fish farm in the Hardangerfjord

Partners: SINTEF Fisheries and Aquaculture, IMR-Institute of Marine Research, NTNU-Norwegian University of Science and Technology, and BELLONA

Use of results: Evaluate the full scale potential of IMTA (Integrated Multitrophic Aquaculture)

Financed by: The Research Council of Norway

Photo Sintef

Conclusion

- Norway has a long coastline and good natural conditions for growing macroalgae
- There a few pilot projects but no commercial macroalgae production
- We have not taken advantage of our resources
- To do this, we need more collaboration between stakeholders, researchers, politicians, business and Industry

