

"Security & safety concerns of CO₂ storage"

Dr. Nick Riley MBE, C.Geol, FGS
Head of Science: Energy
Head of Science Policy Europe
9.

Co-ordinator CO₂ GeoNet Research Network of Excellence British Geological Survey Keyworth, Notts, UK

> njr@bgs.ac.uk www.bgs.ac.uk

www.CO2geonet.com

EC Parliament, Brussels, 5 March 2008

A network of public scientific institutes through Europe promoting integration to form a unique European Research Laboratory on CO₂ Storage durably engaged to mitigate climate change and ocean acidification

13 Research Partners

Denmark

Geological Survey of Denmark and Greenland -GEUS

France

Bureau de Recherches Geologiques et Minieres- BRGM Institute Français du Petrole -IFP

Germany

Federal Institute for Geosciences and Natural Resources -BGR

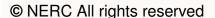
Italy

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS Università di Roma "La Sapienza" -URS

Netherlands

Netherlands Organisation for Applied Scientific Research -TNO

Norway


Norwegian Institute for Water Research - NIVA International Research Institute Stavanger-IRIS SINTEF Petroleumsforskning AS -SPR

UK

Natural Environment Research Council-British Geological Survey-BGS (Co-ordinator) Heriot-Watt University -HWU Imperial College of Science, Technology and Medicine-IMPERIAL

Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Tel 0115 936 3100

NATURAL RESEARCH COUNCIL

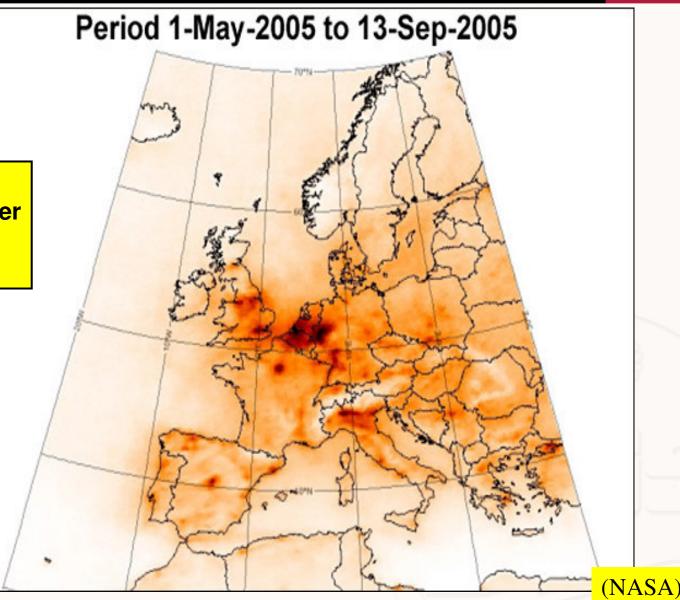
http://www.ukerc.ac.uk/Downloads/PDF/07/0710ReboundEffect/0710ReboundEffectReport.pdf

Estimate of energy savings

Actual energy savings

Indirect rebound effect

Direct rebound effect CCS is special It is the only technology that deals directly with the problem.


Indirect methods of reducing emissions, whilst fossil fuels are widely available, have major uncertainties and unintended consequences

Economy-wide rebound effect

<u>UKERC</u>

Comment: There is already widespread policy support for non-CCS methods which have risk of high levels of "leakage"

Fossil fuel (NOx)
emissions in the lower
atmosphere imaged
from space

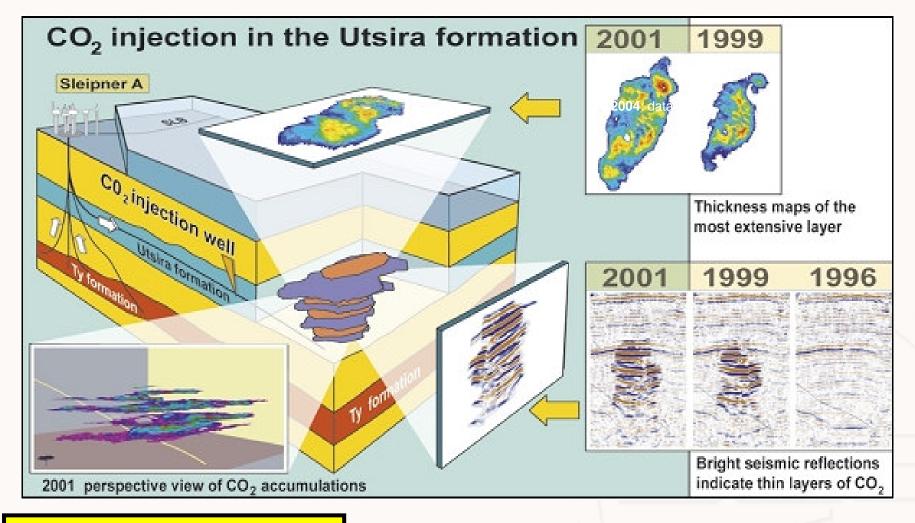
How much CO₂ are we currently leaking into the sky from fossil fuels?

Anthropogenic emissions ~30Gt

Volcanic emissions ~0.3Gt

- Volcanic emissions are ~1% of anthropogenic ones
- Anthropogenic emissions are rising at more than 2.5%/annum (~750Mt/annum)

http://www.bgs.ac.uk/programmes/landres/segs/downloads/VolcanicContributions.pdf



Nature's North Sea CO₂ storage projects

- Brae field >30% CO₂
- Miller Field @ 20% CO₂
- K12b 13% CO₂
- Sleipner 9% CO₂

CO₂ has been retained for millions of years in these fields

CO₂ is safely stored by Statoil

Courtesy of Statoil & SACS/CO2 Store

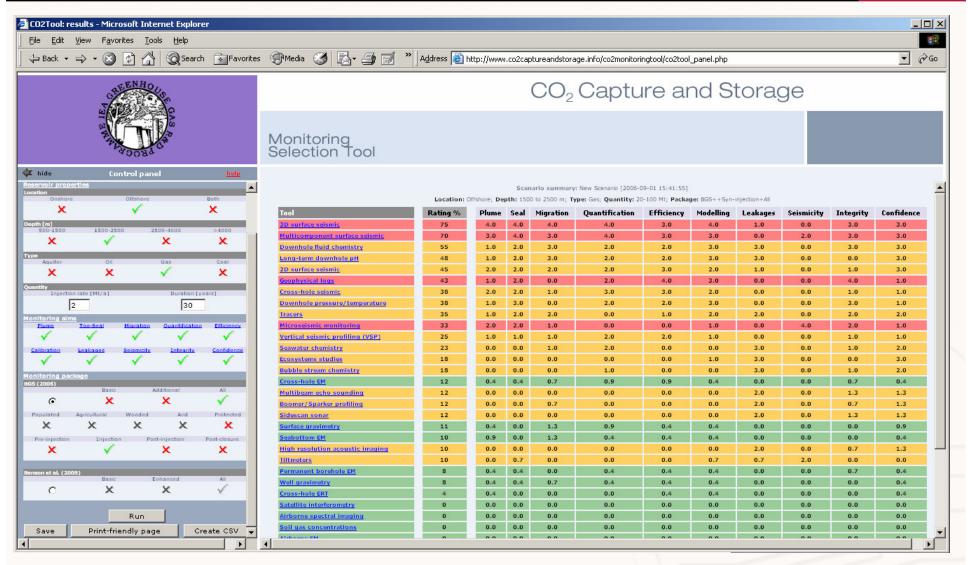
BEST PRACTICE FOR THE STORAGE OF CO₂ IN SALINE AQUIFERS

Observations and guidelines from the SACS and CO2STORE projects

Edited and compiled by:

Andy Chadwick, Rob Arts, Christian Bernstone, Franz May, Sylvain Thibeau & Peter Zweigel

http://www.co2store.org/TEK/FOT/SVG03178.nsf/Attachments/CO2STORE _Best_Practice_Manual_2007_revision_1.pdf/



There is a broad array of tools/methods for monitoring storage in all scenarios

NATURAL ENVIRONMENT RESEARCH COUNCIL

www.bgs.ac.uk

www.co2captureandstorage.info/co2monitoringtool/index.php

© NERC All rights reserved

© NERC All rights reserved

Perhaps this survey should have asked what global impacts would have happened without CCS?

www.pgs.ac.uk

Impacts arising from global impacts of leakage: NGOs (left), energy sector (right)

IPCC Special Report on CO₂ Capture & Storage (2005)

"Will physical leakage of stored CO₂ compromise CCS as a climate change mitigation option?

25. Observations from engineered and natural analogues as well as models suggest that the fraction retained in appropriately selected and managed geological reservoirs is very likely to exceed 99% over 100 years and is likely to exceed 99% over 1,000 years."

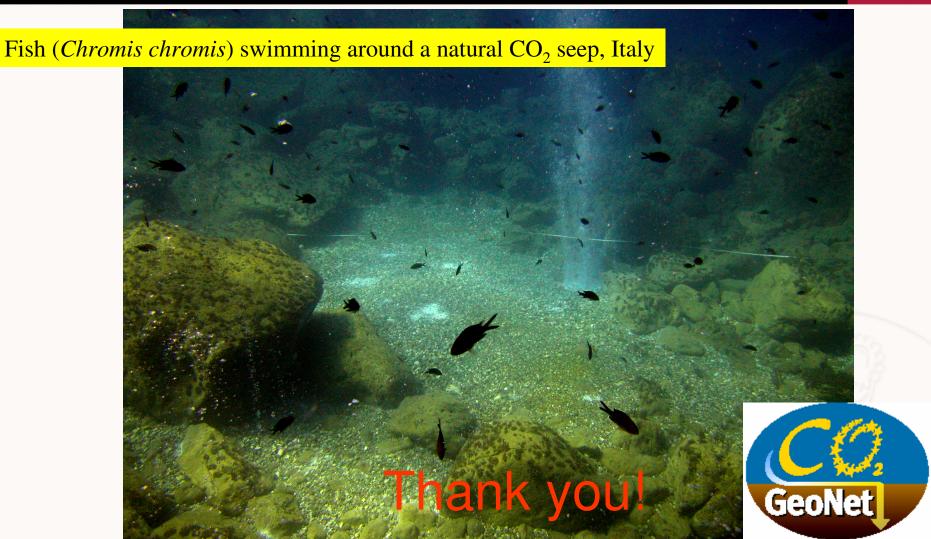
http://www.ipcc.ch/

Table SPM.6. Characteristics of post-TAR stabilisation scenarios and resulting long-term equilibrium global average temperature and the sea level rise component from thermal expansion only. {Table 5.1}^a (IPCC 2007)

Category	CO ₂ concentration at stabilization (2005 = 379 ppm) ⁽⁶⁾	CO ₂ -equivalent Concentration at stabilization including GHGs and aerosols (2005 = 375 ppm) (b)	Peaking year for CO ₂ emissions (a.c)	Change in global CO ₂ emissions in 2050 (% of 2000 emissions) ^(a, c)	Global average temperature increase above pre-industrial at equilibrium, using "best estimate" climate sensitivity	Global average sea level rise above pre-industrial at equilibrium from thermal expansion only ^(f)	Number of assessed scenarios
8	ppm	ppm	Year	Percent	°C	metres	
L	350 – 400	445 – 490	2000 – 2015	-85 to -50	2.0 – 2.4	0.4 – 1.4	6
II	400 – 440	490 – 535	2000 – 2020	-60 to -30	2.4 – 2.8	0.5 – 1.7	18
III	440 – 485	535 – 590	2010 - 2030	-30 to +5	2.8 – 3.2	0.6 – 1.9	21
IV	485 – 570	590 – 710	2020 – 2060	+10 to +60	3.2 – 4.0	0.6 – 2.4	118
٧	570 – 660	710 – 855	2050 – 2080	+25 to +85	4.0 – 4.9	0.8 – 2.9	9
VI	660 – 790	855 – 1130	2060 – 2090	+90 to +140	4.9 – 6.1	1.0 – 3.7	5

Meanwhile, whilst fossil fuels continue to be used CO₂ leaks to the sky at 100% Concerns over potential leakage from storage need to be put in context!

You may ask: what if CCS leaks? I ask: what will happen if we do not urgently deploy CCS?



(Giorgio Caramanna University of Rome La Sapienza)