Likebehandling av ny fornybar varme og kraft

Rapport 2006-014
Likebehandling av ny fornybar varme og kraft

Utarbeidet for Norsk Petroleumsinstitutt og Bellona
Likebehandling av ny fornybar varme og kraft
Innhold:

Sammendrag og konklusjoner ... 1

1 Innledning .. 5
 1.1 Problemstilling ... 5
 1.2 Metode og avgrensninger ... 6
 1.3 Leserveiledning .. 7

2 Varme i Norge i dag .. 9
 2.1 Hva er grønn varme? .. 9
 2.2 Energi brukt til oppvarming ... 11
 2.3 Strukturforhold i varmemarkedet ... 12
 2.4 Støtte til investeringer i grønn energiproduksjon 15
 2.4.1 Grønn el – fra investeringsstøtte til elsertifikater 16
 2.4.2 Grønn varme – støtte til produksjon av brensel og varme 16
 2.5 Reguleringer mv. som påvirker varmebruken 18

3 Hva skjer når det innføres elsertifikater? .. 21
 3.1 Hva er et elsertifikatmarked? ... 21
 3.2 Det svenske elsertifikatmarkedet og biobasert kraftproduksjon 22
 3.3 Biobasert varmeproduksjon i Sverige ... 23
 3.4 Inntektssiden for sertifikatberettiget kraftproduksjon 24
 3.5 Endringer i sluttbrukerprisen ... 25

4 Virkemidler for å støtte fornybar energi .. 27
 4.1 Ulike typer av virkemidler ... 27
 4.1.1 Reguleringer ... 27
 4.1.2 Økonomiske virkemidler ... 28
 4.1.3 Administrative virkemidler .. 29
 4.2 Finansiering over statsbudsjettet eller gjennom markedet 30
 4.3 Rammebetingelsene er viktige for utbygger 31

5 Varmesertifikater .. 33
 5.1 En mulig utforming av et varmesertifikatmarked............................... 33
 5.2 Varmesertifikatenes egenskaper ... 36
 5.2.1 Effektivitet og måloppnåelse ... 36
 5.2.2 Finansiering av støtten .. 39
 5.2.3 Risiko og forutsigbarhet ... 40
 5.2.4 Administrative kostnader ... 40
 5.2.5 Omfang .. 42
 5.3 Et frittstående sertifikatmarked for varme eller knyttet til elsertifikatene? 44

6 Investeringsstøtte ... 47
 6.1 Utforming av investeringsstøtte .. 47
 6.2 Investeringsstøttens egenskaper ... 48
 6.2.1 Incentiver til investeringer ... 48
 6.2.2 Finansieres over statsbudsjettet eller av markedet 48
 6.2.3 Risiko og forutsigbarhet ... 49
 6.2.4 Administrative kostnader ... 50
 6.2.5 Omfang og egnethet ... 50
7 STØTTE TIL VARMEPRODUKSJON ...53
 7.1 Ulike former for produksjonsstøtte ...53
 7.1.1 Garanterte minstepriser ...53
 7.1.2 Tilskudd til produksjon ..54
 7.1.3 Anbudskonkurranser ...54
 7.2 Mulig produksjonsstøtte for grønn varme56
 7.3 Produksjonsstøttens egenskaper ..57
 7.3.1 Incentiv til produksjon av varme ..57
 7.3.2 Finansiering av støtten ..57
 7.3.3 Risiko og forutsigbarhet ...57
 7.3.4 Administrative kostnader ...58
 7.3.5 Omfang og egnethet ...58

8 HVILKET VIRKEMIDDEL ER MEST HENSIKTMESSIG?59
 8.1 Produksjonsbasert støtte er mer kostnadseffektiv enn
 investeringsstøtte ...59
 8.2 Sertifikater sikrer målet om like rammevilkår60
 8.3 Støtte til varmeproduksjon har de laveste administrative kostnadene61
 8.4 Investeringsstøtte er minst risikoutsatt for investorene62
 8.5 Produksjonsbasert støtte er mer teknologinøytral enn
 investeringsstøtte ...62
 8.6 Enten støtte til varmeproduksjon eller felles el- og
 varmesertifikater63

VEDLEGG: DET AUSTRALSKE SERTIFIKATSYSTEMET67
Sammendrag og konklusjoner

Resymé

Hvis et norsk elsertifikatmarked etableres, vil det være behov for å tilpasse rammevilkårene for grønn varmeproduksjon slik at grønn varme ikke taper i konkurranse med grønn el. Det mest effektive virkemidlet for å sikre at rammevilkårene for grønn varme og el blir mest mulig like er å inkludere varme i en felles sertifikatordningen for el og varme. Dersom det ikke er mulig å få til en felles sertifikatordning for el og varme vil en produksjonsstøtte til grønn varme som følger sertifikatprisen, være det beste virkemidlet for å sikre like konkurransevilkår.

Bakgrunn

I løpet av noen år er det stor sannsynlighet for at det etableres et norsk marked for elsertifikater, eventuelt som et felles marked med Sverige. Et sertifikatmarked som kun omfatter ny fornybar kraftproduksjon, vil isolert sett gi ny fornybar, eller grønn, varmeproduksjon dårligere konkurransevilkår. Med et fortsatt politisk mål om grønn varmeproduksjon, vil det i en slik situasjon være behov for å bedre rammevilkårene for grønn varme slik at disse kommer på lik linje med grønn kraft.

Problemstilling

Den overgripende problemstillingen i rapporten er:

Hvordan sikre ny fornybar varme like rammebetingelser som grønn el når det innføres et elsertifikatmarked?

I analysen går vi ut fra at grønn el og varme i dag har tilnærmet like rammevilkår. Like rammevilkår etter at det etableres et sertifikatmarked skal derfor tolkes som at varmeproduksjon relativt sett ikke kommer dårligere eller bedre ut enn i dagens situasjon.

Grønn varme omfatter alle varmeleveranser som er basert på fornybare energikilder som ikke gir netto utslipp av CO₂. Varmeleveransene kan enten være basert på biomasse i form av et brensel (ved, pellets, flis, organisk avfall mv.), eller på en ikke-brenselbasert teknologi (jordvarme, solfanger, spilloverVARME mv.).

Konklusjoner og tilrådinger

Dersom målet er å sikre like rammevilkår for grønn varme og el, vil det være mest hensiktsmessig å inkludere varme i et kommende sertifikatmarked. Hvis dette
ikke er praktisk gjennomførbart, eller dersom målet er mest mulig grønn varme-produksjon, er direkte støtte til produksjon av grønn varme (dvs. produksjonsstøtte) å foretrekke. For å sikre like rammevilkår bør størrelsen på støtten følge sertifikatprisen. Støtten bør gis til omsatt grønt brensel ved leveranse til sluttbrukere som produserer varmen selv (for eksempel i en pelletskamin), eller til varme produsert i fjern- og nærvarmeanlegg.

Elsertifikater vil gi grønn varme dårligere rammevilkår

I et elsertifikatmarked legges forbrukerne av kraft en plikt til å dekke en gitt andel av sitt forbruk med ny fornybar el. Målet er at de som etterspør kraft, skal betale for en produksjonsomlegging i miljøvennlig retning. Videre må det defineres nærmere hva som skal regnes som fornybare energikilder, og produksjon basert på disse kildene er berettiget til å få sertifikater. Alle sertifikatpliktige forbrukere må så kjøpe sertifikater for å dekke kravet om forbruk av fornybare energikilder. Anlegg med rett til å motta sertifikater får dermed inntekt fra to markeder, kraftmarkedet og sertifikatmarkedet. Hvor høy sertifikatprisen blir, er usikkert, men foreløpige beregninger av et felles norsk-svensk marked viser en pris på opptil 15 øre/kWh. Investeringsstøtten til grønn varme er i dag betraktelig lavere enn dette. Hvis støtten til varme ikke endres tilsvarende, vil varme sannsynligvis tape i konkurransen med grønn el. Sluttbrukerprisen på el vil ifølge beregningene øke med 1-2 øre/kWh, hvilket betyr at alternativprisen til varme øker marginalt, men ikke nok til å kompensere for inntektsøkningen som produsenter av fornybar kraft får.

Økonomiske virkemidler kreves for å kompensere grønn varme

Grønn energi kan fremmes gjennom mange forskjellige typer av virkemidler. Regulatoriske virkemidler, som tilknytningsplikt og krav om vannbåren varme i offentlige bygg, kan underlette utbyggingen av fjernvarme. Administrative tiltak, som informasjonskampanjer, kan påvirke forbrukerne i valget av oppvarmingsløsninger. Disse tiltakene vil imidlertid sannsynligvis ikke være tilstrekkelige til å kompensere for den prisfordelen som grønn el får i et sertifikatmarked. Det er kun de økonomiske støtteordninger som vil være tilstrekkelig effektive for å sikre at grønn varme ikke får dårligere rammevilkår enn grønn el dersom et sertifikatmarked for eksempel i et sertifikatmarked i Norge. De tre mest aktuelle virkemidlene for å støtte grønn varme- og energiproduksjon er sertifikatordning, produksjonsstøtte og investeringsstøtte.

Separat sertifikatmarked for varme er gjennomførbart, men ikke nødvendigvis effektivt

Det er mulig å etablere et sertifikatmarked for grønn varme, men ettersom varme ikke er en helt homogen vare, slik som el er, er det flere utfordringer som må løses for å et sertifikatmarked for grønn varme å være effektivt. For eksempel må man sannsynligvis akseptere en del sjablonberegninger av varme- og energiproduksjon. Måling av all varme- og energiproduksjon vil gi unødig høye administrasjonskostnader siden man da må involvere sluttbrukeren i sertifikatsystemet, ettersom en god del av varme- og energiproduksjonen foregår der. Generelt kan en si at jo mer sjablonberegninger, jo usikre om måloppnåelsen i form av faktisk varme- og energiproduksjonen, dvs. ikke bare for sjablonberegninger, dvs. ikke bare for sertifikater.
Omfanget av en sertifikatordning

For å redusere de administrative kostnadene knyttet til en sertifikatordning bør ikke sluttbrukere involveres, og sertifikatene isteden tildelas fjernvarmeanlegg, brennselsleverandører og utstyrslverandører:

- For varme som produseres i fjern- eller nærvarmeanlegg vil faktisk, dvs. målt, produksjon ligge til grunn for tildeling av sertifikater. For den delen av produksjonen som er basert på blander avfall vil det måtte gjøres en avregning av andelen ikke-organisk avfall, ettersom dette avfallet ikke vil være sertifikatberettiget. Denne avregningen vil være basert på en sjoblons beregning, tilsvarande den som brukes for CO₂-delen av utslippsavgiften for forbrenningsanlegg. For målt varmeproduksjon vil det sannsynligvis være begrenset administrative kostnader.

- For varme produsert hos sluttbukeren vil brennselsleverandøren få tildelt sertifikater basert på omsatt biobrensel. Her må det gjøres en sjoblons beregning, hvor en forutsetter en gitt varmeproduksjon av en gitt mengde brensel, enten pr. kg eller volumenhet. For standardiserte brenser, med et gitt energiinnhold, vil dette være forholdsvis uproblematisk.

- For varme produsert i ikke brenselbaserede anlegg, som varmepumpen, vil utfordringene knyttet til en sertifikatordning være større. Det kan diskuteres hvorvidt slike anlegg heller bør ses som energieffektiviserings og dermed holde utenfor en sertifikatordning, og heller støttes gjennom andre typer av tiltak.

Investeringsstøtte er minst velegnet for å øke varmeproduksjonen

Som navnet sier, vil investeringsstøtte gi incentiver til investeringer i produksjonsanlegg, men ikke nødvendigvis i produksjon av varme. Når målet er relatert til varmeproduksjon, slik som den norske målsettingen om minst 4 TWh grønn varme innen 2010, er investeringsstøtte sannsynligvis ikke det mest treffsikre virkemidlet. Hvis man ønsker å sikre like rammevilkår når elsertifikater innføres, er investeringsstøtte uvegnet. Det kommer av at man ikke vet hva støtten blir pr. produsert enhet, og dermed ikke hvordan støtten forholder seg til utviklingen i elsertifikatprisen. Investeringsstøtten beregnes i forkant, basert på forventede kostnader, og det vil ikke være hensiktsmessig å justere denne i etterkant når man vet hva sertifikatprisen faktisk blir.

Støtte til varmeproduksjon er effektivt og sikrer like vilkår

En støtte som gis pr. produsert varmeeinhet vil sannsynligvis være det mest hensiktsmessig virkemidlet når målet er å gi varme samme rammevilkår som el. For at vridningen mellom grønn varme og grønn el skal bli minst mulig, bør støttesatsen følge sertifikatprisen. Støtten vil gis til omsatt biobrensel, dvs. både norskprodusert og importert brensel, med samme type av sjoblons beregninger som for varmesertifikater, eller til varme produsert i fjern- eller nærvarmeanlegg. Grunnen til at produksjonsstøtte vil være mer hensiktsmessig enn varmesertifikater, er antatt lavere administrasjonskostnader og at det ikke er noen risiko for utnyttelse av markedsmakt. Et varmesertifikatmarked kan bli såpass lite at noen aktører vil kunne påvirke prisen, og i så tilfelle vil det slik marked ikke være effektivt.
Integrette el- og varmesertifikatmarkeder er best hvis formålet er like rammevilkår

Hvis det er mulig å integrere varme i et fremtidig elsertifikatsystem, vil dette være den mest effektive måten å sikre like rammevilkår for grønn varme og el. Foreløpig har dette blitt sett som urealistisk i forhold til etableringen av en felles norsk-svensk sertifikatmarked, men det er ikke noen prinsipielle hindringer i veien for en integrering av grønn varme. Dersom det etableres et norsk sertifikatmarked, uansett om dette er integrert med det svenske sertifikatmarkedet eller ikke, anbefaler vi at varme innlemmes i dette markedet, for å på den måten sikre mest mulig like vilkår for all ny fornybar energi.
1 Innledning

Et norsk sertifikatmarked for ny fornybar el (elsertifikater) er under planlegging. Dette markedet vil enten omfatte kun Norge eller bli felles med det svenske markedet.\(^1\) Utformingen av markedet er ikke endelig bestemt, men det er stor sannsynlighet for at det kun vil omfatte elektrisitet. Gjennom sertifikatene får ny fornybar kraft en ekstra inntekt, dvs. en form for produksjonsstøtte, i tillegg til kraftprisen. Hva sertifikatprisen blir er usikkert, men modellberegninger predikerer en pris mellom 10 og 15 øre/kWh.

I oppvarmingsmarkedet konkurrerer eloppvarming med andre energikilder som for eksempel oljefyring og fjernvarme. Energileveranser av varme basert på nye fornybare energikilder, heretter kalt grønn varme, har i dag et gjennomsnittlig støttenivå på 2 øre/kWh. En sertifikatpris for el som er høyere enn støttenivået til grønn varme, vil gi grønn varme en konkurransemessig ulempe i forhold til el. En slik konkurransemessig skjevhet medfører et samfunnsøkonomisk tap fordi målene som sertifikatmarkedet skal bidra til, før eksempel reduserte utslipp av CO\(_2\), oppnås på en unødvendig kostbar måte.

1.1 Problemstilling

Den overgripende problemstillingen som drøftes i denne rapporten er:

Hvordan sikre ny fornybar varme like rammebetingelser som grønn el når det innføres et sertifikatmarked?

I analysen går vi ut fra at fornybar el og varme i dag har tilnærmelike rammevilkår, og vi har ikke gjennomført noen analyse av hvorvidt dette faktisk er tilfelle.\(^2\) Like rammevilkår etter at det etableres et sertifikatmarked skal derfor tolkes som at varmeproduksjon ikke kommer dårligere eller bedre ut enn dagens situasjon.

\(^1\) Når dette prosjektet startet opp høsten 2005 var det mer eller mindre klart at det ville bli et felles norsk-svensk sertifikatmarked fra 01.01.2007, men når prosjektet avsluttes i januar 2006 er dette høyst usikkert.

\(^2\) Det kan hevdes at ved dagens tariffstruktur for nettleie, hvor den fast avgiften er lav og den variable avgiften er høy, har varmekunder en indirekte subsidie ved at de betaler samme nettleie som kunder med elektrisk oppvarming. Ettersom mesteparten av nettomuskostnadene er faste, dvs. uavhengige av hvor mye kraft som brukes, er det sannsynlig at varmekunder ikke betaler sine totale nettomuskostnader, men at en del av denne kostnaden veltes over på de sluttbrukere som har elektrisk oppvarming.
Andre problemstillingene som blir drøftet er:

- Hvilke virkemidler kan være aktuelle for å støtte fornybar varme?
- Hva er de relevante egenskapene for virkemidlene, og hvordan rangerer forskjellige virkemidler i forhold til hverandre når det gjelder disse egenskapene?
- Hvilket virkemiddel er best egnet til å oppnå målet om like rammebetingelser for grønn varme som for grønn el?

1.2 Metode og avgrensninger

Det finnes flere ulike virkemidler som kan være aktuelle for å sikre at grønn varme får likeverdige rammebetingelser som grønn el får ved innføring av et sertifikatmarked. Eksempler på ulike virkemidler er:

- Et eget sertifikatmarked for grønn varme.
- Et sertifikatmarked som er koplet opp mot, men ikke integrert med, sertifikatmarkedet for grønn el.
- Produksjonsstøtte, for eksempel i form av feed-in tariffer eller garantert minstepris, grønt energitilskudd eller "reversed auctions”
- Investeringsstøtte, dvs. en utvidelse av den støtte som i dag administreres av Enova.

Det kan også tenkes ulike kombinasjoner av disse virkemidlene.

I rapporten drøftes de virkemidlene som er liste opp ovenfor mer ingående. Hvor hensiktmessige disse virkemidlene er for å sikre like rammevilkår vurderes primært basert på hvor effektive de er og hvorvidt de er praktisk gjennomførbare. Andre egenskapene virkemidlene vurderes opp mot omfatter:

- Administrative kostnader, hvilket omfatter både merkostnader til en eventuell sentral administrasjonsmyndighet og merkostnader til administrasjon hos aktørene i markedet – produsenter, distributører og sluttbrukere.
- Risiko og forutsigbarhet for henholdsvis investorer og miljømyndighet, dvs. hvem som tar risikoen og hvor stor den er.
- Finansiering av støtten, dvs. om støtten primært finansieres over statsbudsjettet, og dermed er utsatt for en politisk risiko, eller om støtten finansieres mer eller mindre direkte av markedsaktørene/sluttbrukerne.
- Incentivvirkninger for aktørene i markedet, hvor vi ser på incentiver til å velge riktig teknologi, riktig investeringsnivå og riktig drift.
- Mulig omfang av virkemiddelet. Enkelte deler av varmemarkedet kan være vanskelig å inkludere med noen virkemidler og lettere med andre. For eksempel er investeringsstøtte lite egnet for teknologier som krever lite investering. Det er gunstig at mest mulig av både grønn varme og ikke grønn varme omfattes av virkemiddelet.

Drøftingen av egenskaper er i hovedsak kvalitativ. Vi baserer oss på forholdsvis generelle beskrivelser av ulike virkemidler, dvs. at vi ikke bruker eller gjør noen detaljert beskrivelse av hvordan virkemidlet vil kunne bli utformet i praksis.
Videre bruker vi erfaringer fra andre land hvor de ulike virkemidlene er implementert.

Basert på gjennomgangen av de forskjellige virkemidlene blir egenskapene til disse sammenlignet. Basert på dette gis en faglig vurdering av hvilket virkemiddel som er mest effektivt når målet er å oppnå likeverdige rammevilkår for grønn varme som for grønn el.

Som nevnt rangeres virkemidlene etter hvor effektive de er for å støtte grønn varme. Vi har dermed ikke tatt stilling til hvilket virkemiddel som er samfunns-økonomisk mest optimalt for å nå myndighetenes mål om bruk av varme, men heller hva som er optimalt gitt at fornybar el får støtte i form av elsertifikater.

I rapporten utgår vi fra at det felles norsk-svenske sertifikatmarkedet blir etablert fra 01.01.2007. Dette har tidligere vært intensjonen til både norske og svenske myndigheter, men januar 2006, når rapporten ferdigstilles, er det større usikkerhet om etableringstidspunkt, og det er mulig at dette blir utsatt.

1.3 Leserveiledning

Rapporten begynner med en nærmere definisjon av begrepet grønn varme, en beskrivelse av det norske bioenergi- og varmemarkedet og en sammenligning av dagens støtte til henholdsvis grønn varme og el (kapittel 2). I kapittel 3 spør vi hva som skjer når elsertifikatmarkedet etableres, og hvordan dette påvirker grønn varme. Vi ser her spesielt på hva som har skjedd med bioenergi i Sverige etter at det svenske elsertifikatmarkedet ble etablert 1. mai 2003. I kapittel 4 drøfter vi på generell basis ulike typer av virkemidler som brukes for å støtte fornybar energi. I kapittel 5-7 går vi mer detaljert gjennom de mest aktuelle virkemidlene; varme-serifikater, investeringsstøtte og produksjonsstøtte. Disse virkemidlene blir sammenlignet i kapittel 8, og her besvarer vi også spørsmålet om hvilket virkemiddel som er "best" når hensikten er å gi grønn varme samme rammevilkår som grønn el. I vedlegg 1 beskriver vi kort hvordan det australske elsertifikatmarkedet fungerer, dette markedet er interessant ettersom det er den eneste, så vidt vi kjenner til, som inkluderer en teknologi for vannbasert varmeproduksjon.
2 Varme i Norge i dag

I dette kapitlet drøfter vi hva grønn varme er, gir en kort oversikt over det norske varmeforbruket, bransjestrukturen for grønn varme pluss en oversikt over støtte til ny fornybar energi.

2.1 Hva er grønn varme?

Grønn varme omfatter alle varmeleveranser som er basert på fornybare energikilder som ikke gir netto utslipp av CO₂. Varmeleveransene kan enten være basert på biomasse, i form av et brensel (ved, pellets, flis, organisk avfall mv.), eller på en ikke-brenselbasert teknologi (jordvarme, solfanger og spillvarme).

Biomasse

Biomasse består av biologisk materiale, og omfatter mange forskjellige typer av materialer, for eksempel skogsflis, halm, husdyrgjødsel og organisk avfall. Biobrensel er brensel der biomasse er utgangspunktet. Brenselet kan ha gjennomgått en kjemisk eller biologisk prosess eller omdannelse, og kan ha blitt brukt til noe annet tidligere (dvs. avfall).

Ifølge Nobio deles biobrensel ofte inn i fire hovedtyper:

- Faste, uforedledde biobrenser hvor råstoffet kun i begrenset grad er bearbeidet. Eksempler på denne type biobrensel er ved, flis, bark og halm
- Faste, foredledde biobrenser som er med bearbeidet, for eksempel i form av at råstoffet er kvernet/malt og tørket. Råstoffet kan være avfallsvirke fra sagtug og annen trebearbeidende industri, avfallsprodukter fra skogseindustrien (bark og flis) og halm. Sluttproduktene er briketter, pellets eller i pulverform.
- Biogass som oppstår ved forråtning av organisk materiale, for eksempel gjødsel eller matrester Gassen kan brukes til kraft- og varmeproduksjon eller som drivstoff.
- Flytende biobrensel benyttes primært som drivstoff i kjøretøyer, og består av bioetanol, bio-oljer eller biodiesel.

Foredlet biobrensel er som regel dyrere enn uforedlet brensel, men har fordeler i form av høyere energiinnhold per volumenhet (hvilket bl.a. gir lavere transportkostnader), det er mer homogent og dermed er det enklere å regulere forbranningen, det har god holdbarhet ved lagring og det er forholdsvis enkelt å konvertere oljefyrte anlegg til foredlet biobrensel.

Figur 2.1 Bioenergi i Norge, bruk og nyttbar potensial

![Diagram av bruk og nyttbar potensial for bioenergi i Norge]

Kilde: Eid Hohle (2001)

Avfall

Ikke-brenselbaserte teknologier

I tillegg til de brenselbaserte teknologiene finnes det teknologier som produserer varme, men som ikke bruker et brensel. Til denne kategorien hører solvarme og ulike typer av varmepumper:

- **Aktiv solvarme:** Varme absorbert i solfangere som ved hjelp av et overføringsmedium (væske) distribueres til oppvarmingsformål.
- ECON Analyse -
Likebehandling av ny fornybar varme og kraft

- **Geotermisk energi eller jordvarme:** Varme utvunnet fra dype borehull i grunnfjellet og som ved hjelp av et overføringsmedium (væske) distribueres til oppvarmingsformål. Til forskjell fra varmepumpe utnytter en her direkte de høye temperaturene som finnes dypere nede i jordskorpen.

Hvorvidt disse teknologiene skal klassifiseres som grønn varme kan diskuteres. Solvarme er nok den teknologien som er nærmest til å bli betraktet som grønn varme, dette gjøres for eksempel i det australske sertifikatsystemet for fornybar energi hvor soloppvarmet varmtvann gir sertifikatrett, se vedlegg 1 for en beskrivelse av dette markedet..

Varmepumper kan like gjerne klassifiseres som energieffektiviseringstiltak som produksjon av grønn varme. Hvilket alternativ som velges vil i mangt og mye være en skjønnsmessig vurdering, hvor de viktigste hensynene må være å se til at teknologien ikke får dobbel støtte (dvs. både som grønn varme og energieffektivisering) eller havner helt utenfor støtteordninger (i de tilfeller støtte også gis til energieffektivisering, som gjøres i dag).

Spillvarme

Ved all varmekraftproduksjon og i en lang rekke industrielle prosesser blir det frigjort varme som ikke lar seg nyttiggjøre i tilknytning til primæraktiviteten. Denne varmen trenger ikke å ha sin opprinnelse i fornybar energi, men heller i fossile brenslar, kjernereaksjoner eller kjemiske prosesser. Overskuddsvarmen som ikke er basert på fornybar energi har ikke i seg selv noen direkte tilhørighet til denne kategorien. Indirekte kan det likevel være naturlig å sidestille utnyttelse av overskuddsvarme med fornybar varme dersom overskuddsvarmen alternativt ikke ville bli brukt. Under slike omstendigheter medfører varmeutnyttelsen i prinsippet ikke større miljøbelastninger enn alternativet. Tvert om er det mulig at bruken av spillvarme reduserer behovet for annen energi.

Det kan følgelig argumenteres for at spillvarme fra ikke-grønne produksjons-prosesser er grønn – og for at den ikke er grønn. Dersom spillvarmen er et produkt i seg selv (som i et CHP-verk for eksempel) synes det lite rimelig å oppfatte den som grønn. Dersom spillvarmen kun er et biprodukt, altså et produkt som ikke gjør at produksjonen settes i verk, er det naturlig å oppfatte den som grønn.

2.2 Energi brukt til oppvarming

Innenlandsk sluttbruk av energi var i 2004 på 226 TWh, og av dette utgjorde ¾, dvs. 168 TWh, såkalt stasjonært forbruk. Dette forbruket var temmelig likt fordelt mellom industri og tjenesteyting/husholdninger. Elektrisitet er den største energikilden, og utgjorde omtrent 70 prosent av det stasjonære forbruket i 2004, fulgt av gass, olje og biomasse, se figur 2.2. Elektrisitet og petroleumprodukter har vært de dominerende energibærerne i norsk energiforbruk til stasjonære formål de siste 30 årene. De siste årene har det imidlertid vært en svak økning i bruken av andre energiformer, inkludert grønn varme.
I Norge går en stor del av det totale energiforbruket til oppvarmingsformål, hovedsakelig på grunn av klimaet. Varmebehovet i bygninger er knyttet til romoppvarming og tappevann. For boliger utgjør dette omtrent 70 prosent av det totale energiforbruket, mens den tilsvarende andelen for næringsbygg er snau 20 prosent. For begge typer bygg er nærmere 70 prosent av energien elektrisitet. Varmebehovet dekkes i dag av ulike tekniske løsninger og energibærere. Hovedskillet går mellom oppvarmingsbehov som dekkes ved elektrisitet og andre, ”direkte” varmekilder som for eksempel oljefyring, bioenergi og fjernvarme. Ifølge boligopptellingen i 2001 har omtrent 70 prosent av alle boliger to eller flere systemer for oppvarming, hvorav nærmere 50 prosent har en kombinasjon av elektrisk anlegg og ovner for fast eller flytende brensel (SSB, 2002).

Et interessant trekk i varmemarkedet for private husholdninger er at andelen av total energibruk til varmeformål har gått jevnt nedover siden 1950. At nordmenn bruker en mindre andel av energiforbruket direkte til oppvarming skyldes flere forhold, hvor bedre isolerte boliger, mer effektivt oppvarmingsutstyr og bruk av mer elspesiﬁkt utstyr er de viktigste faktorene.

2.3 Strukturforhold i varmemarkedet

De viktigste strukturforholdene i varmemarkedet er teknologiske forhold og eierforhold. Både teknologier og eierforhold kan og vil forandre seg i fremtiden. Dette vil kunne ha betydning for utforming og virkning av virkemidler. Det er derfor viktig ikke å binde drøftingen til dagens situasjon og teknologier, ikke minst for at konklusjonene skal være mest mulig robuste overfor slike endringer. Vi vil derfor begynne med en generell beskrivelse av de viktige strukturforholdene, før vi går litt mer i detalj på faktiske forhold i dag. I Figur 2.3 gis en skjematisk fremstilling av strukturforholdene i varmemarkedet.
Figur 2.3
Strukturforhold i varmemarkedet og samspillet med el

Varmemarkedet kan ikke sees separat fra elmarkedet. De to markedene er knyttet sammen ved at samme energibærere brukes til produksjon av elektrisitet og varme, ved at elektrisitet brukes til produksjon av varme i fjernvarmeanlegg, og ved at elektrisitet er et alternativ til andre varmekilder hos sluttbrukerne. For det andre fungerer varmemarkedet på forskjellige måter. En del varme når sluttbrukeren ved at fjernvarmeanlegg produserer varme fra energibærere og distribuerer varmen gjennom rør. Energikilden kan enten være kjøpt brensel, som for olje, gass eller bio, eller den kan være gratis, som for sol, jordvarme og kanskje avfall. Resten av varmen lages hos sluttbrukeren selv, ved at energikilden blir transportert dit. Energikilden kan, som for fjernvarme, enten være kjøpt brensel, eller den kan være gratis.

I ECON (2002) gjøres det en kategorisering av varmemarkedet, hvor to skiller basert på de grove trekkene i strukturforholdene i varmemarkedet nevnt ovenfor, er spesielt relevante:

Fjernvarme ↔ Egenprodusert varme

Brensel ↔ Ikke brensel

Disse to parametrene kan kombineres til fire forskjellige kategorier, og i hver av de fire finnes det eksempler på teknologier. Innen to av kategoriene finnes det også eksempler på grønne og ikke-grønne teknologier. Denne inndelingen kan settes opp i en tabell slik det er gjort i Tabell 2.1. Det er også plassert eksempler på kategoriene i tabellen.
Likebehandling av ny fornybar varme og kraft

Tabell 2.1 Kategorisering av varmemarkedet

<table>
<thead>
<tr>
<th></th>
<th>Fjernvarme</th>
<th>Egenprodusert varme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grønn</td>
<td>Ikke grønn</td>
</tr>
<tr>
<td>Brensel</td>
<td>Avfall, bio</td>
<td>Olje, el</td>
</tr>
</tbody>
</table>
| Ikke brensel | Jordvarme, spillvarme, varmepumpe | Spillvarme | Solfanger, varmepumpe | Egen brensel

Kilde: ECON (2002)

I det følgende beskrives de generiske verdikjedene for de energikildene som er aktuelle for produksjon av grønn varme.

Biomasse/biobrensel

En skjematisk fremstilling av verdikjeden for biobrensel vises i Figur 2.4.

Fra skogsbruket hentes skogsvirke i form av rå flis, denne tørkes og videreføredes til for eksempel pellets eller briketter.

Uforedlet biobrensel, som ved, leveres direkte fra råvareleverandøren (skogsbruket) til forbruker, eventuelt via en forhandler.

Brenslet leveres så enten direkte til sluttbrukeren, som selv produserer varmen, eller til en varmesentral i et nær- eller fjernvarmeanlegg, hvor varmen distribueres til sluttbrukeren gjennom et nett av rørledninger.

Figur 2.4 Verdikjeden for biobrensel

Kilde: Nobio, ECON

Avfall

En skjematisk fremstilling av verdikjeden for avfall brukt som brensel vises i Figur 2.5. Det skilles oftest mellom husholdnings- og næringsavfall, men det viktigste skillet her går mellom sortert og usortert avfall. Sortert avfall vil som regel ha en høyere brennverdi, og følgelig en høyere pris enn usortert avfall. Avfall forbrennes som regel i større forbrenningsanlegg, og varmen distribueres til sluttbrukerne i et nær- eller fjernvarmeanlegg. Det er også mulig å utnytte deponigass, dvs. gass samlet opp i deponier, til varmeproduksjon.

Figur 2.5 Verdikjeden for avfall

![Verdikjeden for avfall](image)

Kilde: ECON

Solfanger mv.

I Norge er det installert omtrent 6.000 m² solfangere til romoppvarming og/eller til tappevann. Disse anleggene leverer om lag 1,5 GWh varme pr. år. Det teoretiske potensialet er stort, men det praktiske potensialet, dvs. det som er teknisk og økonomisk mulig å installere i dagens bygningsmasse er omkring 3,6 TWh/år. Teknologisk og økonomisk er det store forskjeller mellom ulike typer av aktive solvarmeanlegg, fra tappevannanlegg for enkelte husholdninger, kombinerte anlegg for frittstående bosteder, fellesanlegg for flere bosteder (nærvarme), store bygninger (boliger, yrkesbygg, institusjoner) til andre bruksområder (for eksempel store brukere av lavtemperatur varme). Typisk størrelse på en solfanger i et villaanlegg er 15 - 25 m², hvilket kan levere et netto energitilskudd på 5.000 – 7.000 kWh/år, tilsvarende omtrent halvparten av oppvarmingsbehovet.

2.4 **Støtte til investeringer i grønn energiproduksjon**

Støtten til fornybar energi kanaliseres gjennom Enova, som er et statsføretak, eiet av Olje- og energidepartementet (OED). Enova, som ble etablert i 2002, skal fremme mer effekativ energibruk, økt produksjon av ny fornybar energi og miljøvennlig bruk av naturgass. De konkrete målene for Enovas virksomhet, slik som de er pålagt fra OED, er at man for perioden 2001-2010 skal ha bidratt til å realisere eller frigjøre/spare minst 12 TWh, i form av 3 TWh vindkraft, 4 TWh vannbåren varme og resten i form av redusert energibruk (sparring og energieffektivisering). Enova skal også arbeide for at nye teknologiske løsninger som bygger opp under varig og langsiktig energiomleggingen blir tatt i bruk.

Enovas virksomhet finansieres gjennom Energifondet, et fond som ble opprettet av Stortinget i 2001. Energifondet får for tiden alle sine inntekter fra påslaget på nettariffen. Dette påslaget er 1,0 øre/kWh (fra 1/6 2004). For 2005 er de totale
inntektene til Energifondet beregnet til nærmere 650 millioner kr. Tilidligere år har også en del av inntektene til energifondet blitt bevilget direkte over statsbudsjettet, men i og med okningen av nettpåslaget i 2004 har denne bevilgningen falt bort.4

Støtten til all grønn energi, dvs. uansett energikilde og om det produseres varme eller kraft, gis i dag form av investeringsstøtte. Ifølge Enovas resultatrapport for 2004 ble det i det året bevilget totalt 666 millioner kroner i støtte innenfor Enovas løpende programmer. Varmeprogrammene tilsvarte droyt 16 prosent av prosjektporteføljen, med et samlet støttebeløp på 108 millioner kr.

2.4.1 Grønn el – fra investeringsstøtte til elsertifikater

2.4.2 Grønn varme – støtte til produksjon av brensel og varme

Bioenergi kan i dag få støtte dels gjennom Enovas programmer for fornybar energi og dels gjennom Innovasjon Norges Bioenergiprogram. Støtte gis til produksjon og foredling av brensel, produksjon av energi (primært varme) og distribusjon av varme.

Enova gir støtte til alle typer av aktører (kommuner, energi- og kraftselskaper mv.), mens Innovasjon Norges støtte er begrenset til land- og skogbrukssektoren.

I prinsippet skal støtten fra Innovasjon Norge og Enova samordnes, slik at ikke et og samme prosjekt mottar støtte fra begge aktørene. Frem til nå har Innovasjon Norge rettet seg mot mindre anlegg som ikke har vært støtteberettiget hos Enova, men etter at Enova justerte sine kriterier for støtteberettigede prosjekter vil det kunne være vanskeligere å avgjøre hvorvidt det er Innovasjon Norge eller Enova som skal motta søknaden.

I tillegg gir noen kommuner tilskudd til energieffektiviserings tiltak hos sluttbruker, deriblant installasjon av vannbåren varme basert på fornybare energikilder og ulike typer av varmepumper. I Oslo kommune kan man for eksempel få dekket opp til 20 prosent av investeringskostnadene for en rekke ulike tiltak som enten reduserer energiforbruket eller innebærer en overgang fra elektrisk oppvarming.

4 Påslaget på nett tariffen var i 2003 0,3 øre/kWh, og ble først økt til 0,8 øre 1/1 2004 og deretter til 1,0 øre 1/7 2004.
Enovas varmeprogrammer

Enova forvalter for tiden to varmeprogrammer rettet mot industriell prosessvarme, fjernvarme og mindre lokale varmesentraler. De to programmene er Foredling av biobrensel og Program Varme, og de er nærmere beskrevet under. For at et prosjekt skal komme inn under ett av disse programmene, må varmeenergien være basert på en eller flere av følgende fornybare energikilder: avfallsbasert energigjenvinning, biomasse, spillvarme og varmepumper.

Foredling av biobrensel

I dette programmet gis støtte til uttak, transport, foredling og handel med biobrensel. Prosjektet må være basert på skogsvirke (rundvirke eller biprodukt fra skogdrift/-industri).

Støttesatser:

- Anleggsutstyr til uttak, transport, flishogging, terminal, tørring og lager: maksimalt 40 prosent
- Anleggsutstyr til videreforedling til pellets og briketter: maksimalt 25 prosent

Støtte gis ikke til prosjekter basert på rivningsvirke, hvor uttaket av skogvirke er mindre en 10 GWh pr. år, og/eller hvor foredlingen har en årlig produksjonskapasitet under 60 GWh. Prosjekter som kan vise til synergieffekter, for eksempel samlokalisering med annen næringsutvikling, prioriteres.

Programmet ble etablert i 2004, men det ”markedsføres” ikke aktivt i dag, dvs. at det i prinsippet er et sovende program, men det er allikevel mulig å søke om støtte. I 2004 var det kun 4 prosjekter som fikk støtte, med et samlet støttebeløp på 14,3 millioner kr. Disse prosjektene skal gi en biobrenselproduksjon tilsvarende 255 GWh. Programmet vil sannsynligvis bli revitalisert når flere anlegg for produksjon er realisert (dvs. når etterspørselen etter foredlet biobrensel har økt noe).

Program varme

I dette programmet gis støtte til utbygging av produksjonsanlegg og infrastruktur for vannbåren varme. Programmet retter seg mot:

- aktører i energi-, avfalls- og skogbransjen som ønsker å etablere og videreutvikle sin forretningsvirksomhet innen varmeleveranse til bygningsoppvarming og industriell prosessvarme,
- byggeiere som ønsker å bygge lokale energisentraler i tilknytning til egen bygningsmasse, og
- aktører som ønsker å utvikle en portefølje av mindre lokale energisentraler.

Samlet fornybar varmeproduksjon skal være større enn 0,5 GWh pr. år.

Støttebeløpet er ikke bestemt på forhånd, men støtten skal bidra til at prosjektet oppnår en ”avkastning tilsvarende normal avkastning for varmebransjen”. Endelig støttebeløp fastsettes på grunnlag av konkurransen mellom de prosjekter som søker støtte, prosjektets kvalitet, investeringsbudsjett og kontantstrømanalyse.
Prosjekter som mottar støtte må kontraktsfeste et energiresultat, dvs. hvor mye energi som vil bli produsert pr. år. For biobrensel kontraktsfestes 100 procent av produksjonen, for avfallsforbrenning den andel som består av biologisk nedbrytbare fraksjoner, for varmepumper netto varmeproduksjon, og for industriell spillvarme 100 procent av varmen som brukes eksternt.

Enovas varmeprogrammer (dvs. de to tidligere programmene Produksjon og Distribusjon) blir for tiden evaluert av Vista Analyse. Det er sannsynlig at resultatene fra denne evalueringen vil kunne bidra til endringer i programutformingen, men hvordan er vanskelig å si på nåværende tidspunkt.

I 2004 ble det tildelt støtte til i alt 37 prosjekter, med et kontraktsfestet energiresultat på 518 GWh, og med et totalt støttebeløp på 108 millioner kr.

Innovasjon Norge: Bioenergiprogrammet

Dette programmet retter seg mot jord- og skogbruksnæringen, og har til hensikt å utvikle forretningsområdet bioenergi for disse aktørene. Programmet skal stimulere til produksjon, bruk og levering av bioenergi i form av brensel og ferdig varme. Støtte gis til investeringer innen flisproduksjon, varmesalg og gårdsanlegg, og kompetanse og utredning.

Investeringsstilskudd på inntil 25 prosent av godkjent kostnadsoverslag gis til:

- Gårdsanlegg: investeringstilskudd gis hvis det drives tilleggsnæring i betydelig omgang, dvs. som står for minst 50 prosent av varmeforbruket.
- Anlegg for produksjon og salg av brensel: omfatter produksjonsutstyr, lagerløsninger, tørkesystem og bygninger for produksjon av biobrensel basert på skogvirke.

Det finnes ikke noen eksplisitte krav til størrelsen på prosjekter, men prosjekter som er store nok til å oppfylle Enovas krav oppfordres å rette søknaden til Enova.

I kategorien ”kompetanse og utredning” gis det primært støtte til bruk av ekstern konsulenthjelp ved forstudier og prosjektering mv. Denne støtten er begrenset til 50 prosent av totale prosjektkostnader, og maksimalt kr 30.000. Søker forutsettes å bidra med egeninnsats tilsvarende samme beløp som man søker om. Ordningen er derfor å betrakte som en mulighet for ”gratis konsulent”.

2.5 Reguleringer mv. som påvirker varmebruken

I følge Plan og bygningsloven kan det, etter at konsesjon til fjernvarmeanlegg er gitt etter energiloven, ved kommunal vedtekt bestemmes at bygninger som
oppføres innenfor konsesjonsområdet må tilknyttet fjernvarmeanlegget. De tilknyttede enhetene har imidlertid ikke bruksplikt, dvs. at de i prinsippet kan velge å bruke en annen oppvarmingskilde enn fjernvarmen. Varmeprisen til kunder med tilknytningsplikt er regulert slik at den ikke skal overstige prisen for elektrisk oppvarming i konsesjonsområdet. Kunder med tilknytningsplikt har anledning til å klage på prisen i henhold til dette kravet.

Alt elforbruk, unntatt i industrien og i Finmark og Nord-Troms (den såkalte tiltakssonen), belastes med en elavgift lik 10,05 øre/kWh. Det er litt uklart hva som er begrunnelsen for denne avgiften, dvs. om det er en form for miljøavgift eller en ren fiskal avgift. Hvis det er en avgift som speiler miljøkostnadene knyttet til elproduksjon, så bidrar den til å likestille el med annen energiproduksjon, gitt at denne energiproduksjonen enten ikke har tilsvarende miljøkostnader eller betaler sine miljøkostnader gjennom andre avgifter.5 Hvis avgiften er fiskal, dvs. kun har til formål å gi skatteinntekter, kan man argumentere for den gir alternative oppvarmingsformer, som vannbåren varme, en indirekte subsidie. Dette gjelder også i det tilfelle elavgiften er en miljøavgift og de alternative oppvarmingsformene har miljøkostnader som ikke er korrigert gjennom en avgift eller tilsvarende. Den indirekte subsidien oppstår som følge av at alternativkostnaden for varme er elprisen inkludert elavgiften.6

I den nye Energiloven er det krav om at områdekonsesjonærer skal utarbeide energiplaner som skal presenteres før og drøftes sammen med kommunene i området. Energiplaner kan bety at energiforsyningen ses i en større sammenheng og at det blir tatt økt hensyn til alternative energibærere til elektrisitet.

Planlovutvalget drøfter i NOU 2003:14 bedre adgang for kommunene til å kunne kreve vannbåren varme og tilknytning til varmeanlegg i forbindelse med utbygging, eventuelt også ved omforming og fornying av eksisterende bebyggelse.

5 Avgiften på fyringsolje er et eksempel på en slik avgift.

6 I 2003 ble det foreslått å fjerne elavgiften for alt næringsliv, hvilket ville fått store konsekvenser for varmeenergi, se for eksempel ECON (2003a og b).
Likebehandling av ny fornybar varme og kraft
3 Hva skjer når det innføres elsertifikater?

3.1 Hva er et elsertifikatmarked?

Gjennom elsertifikatmarkedet fastsetter myndighetene krav til forbrukerne av kraft om at en viss andel av forbruket skal dekkes av produksjon basert på fornybare energikilder. Målet er at de som etterspør produktet skal betale for produksjonsomleggingen i miljøvennlig retning. Det defineres et sett av fornybare energikilder, og produksjon basert på disse kildene er berettiget til å få sertifikater. Alle sertifikatpliktige forbrukere må kjøpe sertifikater lik kravet om andel av forbruket som skal dekkes av fornybare energikilder. Anlegg med rett til å motta sertifikater får dermed inntekt fra to markeder, kraftmarkedet og sertifikatmarkedet.

Ifølge teorien skal sertifikatprisen i et velfungerende marked bli lik differansen mellom marginkostnaden til den siste enheten sertifikatkraft som må realiseres for å tilfredsstille ambisjonsnivået, og kraftprisen. Sertifikatprisen er altså den ekstra støtten ny fornybar kraft trenger for å bli lønnsom, i konkurranse med konvensjonelle kraftkilder.

Elsertifikatsystemet er et markedsbasert virkemiddel som har til hensikt å stimulere til økte investeringer i ny fornybar kraftkapasitet. Hovedhensikten med ordningen er å få til en mer kostnadseffektiv utbygging av fornybar kraftproduksjon enn med mer tradisjonelle virkemidler.\(^7\) Prisen på sertifikatene vil gjenspeile ekstrakostnaden ved å produsere kraft fra nye fornybare energikilder, slik at det vil bedre produsentens lønnsomhet å satse på denne type produksjon. Et sertifikatmarked kan også være mer effektivt for å nå målsettingen om et gitt antall TWh ny fornybar kraft sammenlignet med tradisjonelle virkemidler. Markedet styrer prisen på sertifikater, og sertifikatprisen vil øke dersom det er fare

\(^7\) For eksempel teknologiutviklingsstøtte, investeringsstøtte og produksjonsstøtte.
for å ikke oppnå ambisjonsnivået. Høyere sertifikatpris bidrar til høyere produksjon og/eller investeringer slik at ambisjonsnivået nås.

3.2 Det svenske elsertifikatmarkedet og biobasert kraftproduksjon

I Sverige har sertifikatsystemet vært i drift i over to år. Da sertifikatsystemet startet opp, fikk en del eksisterende produksjonskapasitet rett til å motta sertifikater for sin produksjon. I all hovedsak dreide dette seg om biobrenselbasert kraftvarme og vannkraftanlegg mindre enn 1,5 MW. Dette tilsvarer en årlig kraftproduksjon på mellom 6 og 7 TWh. Begge gruppene ble støttet (hovedsakelig i form av investeringsstøtte) forut for sertifikatmarkedet trådte i kraft. De fikk således bare en omlegging av støtteordningen.

Figur 3.1 nedenfor viser hvilke typer kraftproduksjon som har produsert kraft med rett til elsertifikater fra det svenske elsertifikatsystemets oppstart 1. mai 2003 og frem til i dag. Det fremkommer av figuren at biobasert kraftvarme har en dominerende stilling i det svenske elsertifikatmarkedet.

Kraftproduksjon innen elsertifikatsystemet i Sverige fra oppstarten 1. mai 2003 og frem til og med august 2005.

Glidende 12. måneders gjennomsnitt

Etter at sertifikatmarkedet trådte i kraft har det vært en økning i bruken av biobasert brensel, men de siste månedene vi har tall for (dvs. sommeren 2004) er produksjonen så lav at vi ikke kan anta at prosentandelen som vises her er
representativ for sektoren. Det antas imidlertid at utviklingen i retning mer bio-basert brensel på bekostning av fossil har fortsatt i resten av 2004 og i 2005. I gruppen Industrielt mottrykk har andel biobasert brensel alltid vært høyt, men den har likevel hatt en økning fra ca 90 prosent ved sertifikatsystemets begynnelse til nærmere 100 prosent.\(^8\)

\[\text{Figur 3.2} \quad \text{Sertifikaterettiget kraftproduksjon fra industrielt mottrykk og fra fjernvarme første år i elsertifikatsystemet}\]

\begin{figure}[h]
 \centering
 \includegraphics[width=0.8\textwidth]{fjernvarme.png}
 \caption{Sertifikaterettiget kraftproduksjon fra industrielt mottrykk og fra fjernvarme første år i elsertifikatsystemet}
 \end{figure}

\[\text{Kilde: STEM (2004)}\]

3.3 Biobasert varmeproduksjon i Sverige

Elsertifikatsystemet gjør det mer lønnsomt å bygge ut kraftvarmeanlegg i Sverige. Dette kan slå både positivt og negativt ut for grønn varmeproduksjon, men vil uansett være positivt for bruken av biobaserte energikilder. For varmeproduksjon vil elsertifikatsystemet være positivt hvis dette betyr at et udekket varmebehov

\[\text{\(^8\) I juli 2004 var andelen biobasert brensel i industriell mottrykk 97 prosent.}\]

\[\text{\(^9\) Erik Larsson, Svensk Fjärrvärme.}\]
Likebehandling av ny fornybar varme og kraft
dekkes av en kombinasjon av varme og el istedenfor utelukkende el. Samtidig kan
det være negativt hvis kraftproduksjonen i gamle og nye anlegg økes på
bekostning varmeproduksjonen.

Figur 3.3 Utviklingen i bruk av energibærere i fjernvarmesektoren

3.4 Inntektssiden for sertifikatberettiget kraftproduksjon

Inntektene til kraftproduusenter som har rett til å motta elsertifikater er todelte.10
For det første mottar de inntekt fra salg av kraft i kraftmarkedet, og for det andre
mottar de inntekt fra salg av sertifikater i sertifikatmarkedet. Det er altså ikke
kraftprisen eller sertifikatprisen isolert sett som gir inntekten til sertifikatberettigete anlegg, det er summen av kraftpris og sertifikatpris.

På sikt er det aktørenes (investorenes) forventning til fremtidig inntekt som vil
være avgjørende for om en investering som medfører økt sertifikatberettiget
produksjon vil komme i stand eller ikke. Her spiller både forventninger til kraft-
prisen og sertifikatprisen inn, samt forventninger til elsertifikatmarkedets livs-
 lengde og stabilitet.

Prisen på elsertifikater i det svenske markedet har ligget på i overkant av 20
øre/kWh i store deler av tiden, men falt til 16,1 øre/kWh i oktober 2005 ifølge
Svenska Kraftnäts database Cecar.

Sertifikatprisen er differansen mellom kraftprisen og langsiktig grensekostnad for
den siste enheten med sertifikatberettiget kraft som må realiseres i sertifikat-
markedet for å tilfredsstille samlet ambisjonsnivå. I et felles sertifikatmarked vil
sertifikatprisen være lik i Norge og Sverige. Denne prisen forventes å være til dels

10 For kraftvarmeverk kommer inntekter fra varmesalg i tillegg.
vesentlig lavere enn den prisen som så langt er observert i Sverige. Det kommer av at det er et stort potensial for relativt rimelig ny fornybar kraft i Norge som må antas å bli realisert ved etablering av et felles sertifikatmarked.

ECON estimerte i 2004 utviklingen i sertifikatpriser og kraftpriser i et felles norsk-svensk elsertifikatmarked, se figur 3.4 (ECON, 2004). Disse beregningene er basert på et norsk ambisjonsnivå på henholdsvis 8 og 12 TWh ny fornybar kraft i 2016, og at det felles sertifikatmarkedet blir etablert i 2006. Ifølge disse beregningene faller sertifikatprisen utover i perioden, hvilket kommer av at det er forutsatt at omfanget av tilgjengelige prosjekter, dvs. det realistiske potensialet, øker etter hvert. De nye prosjektene som blir tilgjengelige for utbyggerne er forutsatt å ha omtrent samme kostnader som de som blir realisert først. To grunner til at ikke hele det realistiske potensialet utløses på en gang er at konsesjonsbehandlingen av nye anlegg vil ta tid, samt at det er begrenset hvor mange prosjekter investorene klarer å håndtere samtidig.

Figur 3.4 Estimert sertifikatpris i ulike scenarier

3.5 Endringer i sluttkomaksjoner

Det betyr igjen at alternativverdien til varme øker, og at varmeprodusentene dermed kan ta ut en litt høyere pris enn i dag. Siden sluttkomaksjoner bare må kjøpe elsertifikater for en andel av sitt elforbruk, øker imidlertid prisen pr. kWh bare med sertifikatprisen multiplisert med denne andelen. Varmeprodusentene blir dermed delvis kompensert for lavere støttetillegg enn grønn el, ved at de kan ta ut en høyere pris og fremdeles konkurrere med eloppvarming. Denne ”kompensasjonen” gis imidlertid til alle varmeprodusenter, ikke bare de som bruker biobaserde brenser.
Sluttbrukerprisen består av engrospris på kraft, moms, nettleie, elavgifter, sertifikatkostnad pr. kWh forbruk (sertifikatpris/andel av forbruket) og margin i handelsleddet. Hvorvidt sluttbrukerprisene på kraft i Norge faller eller øker som følge av sertifikatmarkedet, kommer an på om kostnaden ved kjøp av sertifikater er større eller mindre enn gevinsten ved at engrosprisene på el faller. Engrosprisen på kraft vil reduseres, ettersom sertifikatmarkedet gjør det lønnsomt å investere i mer ny kapasitet enn det ellers ville vært grunnlag for, og vi får en periode med overkapasitet, og lavere priser, i markedet.

Sertifikatkostnaden for forbrukerne er avhengig av kvoteplikten og sertifikatprisen. I tillegg til sertifikatutgiften må sluttbrukerne betale for administrasjonskostnader ved sertifikatordningen og en margin til distribusjonsselskapene som ivaretar kvoteplikten på vegne av sluttkundene. Administrasjonskostnadene i Sverige har så langt ligget på omtrent 0,6 øre/kWh. Figur 3.5 viser utviklingen i sertifikatkostnaden for de sertifikatpliktige med et norsk sertifikatkrav på 8 TWh i 2016. Med et krav på 12 TWh i 2016 vil sluttbrukerprisen øke noe, og i 2016 vil økningen være drøyt 2 øre/kWh. De oppdaterte beregningene av sertifikatprisene endrer ikke vesentlig på utslaget i sluttbrukerprisen.

Sluttbrukerprisen i Sverige blir lavere i et felles sertifikatmarked enn i dagens situasjon, noe som skyldes at både engrosprisen på kraft og sertifikatprisen blir lavere.

Figur 3.5 Norsk sertifikatkrav 8 TWh: Endring i sluttbrukerpris for husholdningskunder. NOKøre/kWh

![Figur 3.5](image.png)

Kilde. ECON (2004)

Med en forventet sertifikatpris på 10-15 øre/kWh, og en økning i sluttbrukerprisen på el med knappe 1 til 2 øre/kWh, vil grønn varme måtte kompenseres med en støtte som er i størrelsesorden 9-13 øre/kWh, for å få konkurransevilkår som er tilnærmet like de man har i dag. Den gjennomsnittlige støtten for grønn varme er i dag 2 øre/kWh, og denne støtten må derfor til å begynnedobles og deretter øke jevnt frem mot 2018.
4 Virkemidler for å støtte fornybar energi

I dette kapitlet drøftes noen generelle egenskaper ved ulike virkemidler og tiltak for å motvirke at grønn varme får dårligere rammevilkår enn grønn el. I EØS-avtalen har Norge forpliktet seg til å følge ESAs regelverk om statsstøtte, og generelt er offentlig støtte til ulike typer formål forbudt. Støtte til fornybar energi vil som regel kunne begrunnes som en form for miljøstøtte, og her åpner ESAs regelverk for større muligheter. Kapitlet inneholder derfor en kort beskrivelse av ESAs retningslinjer for miljøstøtte.

4.1 Ulike typer av virkemidler

Det finnes en rekke virkemidler som kan brukes for å støtte teknologier eller næringar. Virkemiddel grupperes ofte i kategoriene reguleringer, økonomiske og administrative virkemidler. Vi skal her gi en kort omtale av disse kategoriene, og hvorvidt de kan bidra til å bedre rammevilkårene for grønn varme.

4.1.1 Reguleringer

Reguleringer er institusjonelle virkemidler, dvs. lover og forskrifter, som har til hensikt å direkte påvirke aktørenes tilpasning. Disse lovene og forskriftene beskriver mål, standarder og teknologier som aktøren må tilpasse seg. I kapittel 2.4 omtales kort de reguleringer som i dag har betydning for grønn varme, primært fjernvarmeanlegg.

Flere land har konsesjonsregler som gir myndighetene mulighet til å stille bestemte krav til eksisterende virksomheter eller ved utbygging av større anlegg innenfor energisektoren. Et sentralt element i slike regler er å avveie miljøulemper fra virksomheten mot positive samfunnsøkonomiske gevinster ved prosjektet. Det kan settes krav til omfang og størrelse på en utbygging, og spesielle krav om bruk av forskjellig typer teknologi i produksjon eller utslippsrensing blir ofte benyttet.

Dagens regulering av fjernvarme ble utformet tidlig på 1980-tallet, og siden den gang har flere viktige rammebetingelser endret seg betydelig. Viktige endringer inkluderer opprettelsen av Energiloven, endrede energipolitiske mål, som målet om økt bruk av vannbåren varme med 4 TWh innen år 2010 og endringer i Plan- og bygningsloven om bruk av bestemte energiløsninger. Det er derfor grunn til å vurdere om dagens regulering er hensiktsmessig. Mulige endringer i reguleringene for å om mulig gjøre de mer hensiktsmessige inkluderer:

Oppheving av kravet om at prisen på fjernvarme ikke skal overstige elprisen, og innføre fri prissetting. Det er imidlertid usikkert hvor stort potensialet er for en fjernvarmepris som er høyere enn elprisen.

Reguleringer vil, i hvert fall på kort sikt, kun ha marginal effekt på de økonomiske rammevilkårene for grønn varme, og vi har derfor ikke med denne type virkemidler i den videre drøftingen.

4.1.2 Økonomiske virkemidler

Økonomiske virkemidler for å øke produksjonen av fornybar energi kan deles inn i tre ulike kategorier:

- Frivillige systemer hvor markedet bestemmer både prisen og mengden fornybar energi (markedsføring av grønn energi).
- Faste priser hvor myndighetene bestemmer hvor stor støtte produsentene skal få og hvor markedet bestemmer hvor mye energi som blir produsert (for eksempel gjennom såkalte feed-in-tariffs).
- Fast volum hvor myndighetene bestemmer hvor mye fornybar energi som skal produseres og markedet bestemmer prisen (markedsbaserte systemer som sertifikater).

I Norden har det vært utstrakt bruk av direkte støtte til enkelte energibærere. Den praktiske utformingen av støttesystemene har variert betydelig. I Norge har en benyttet fritak for investeringsavgift, støtte til investeringer og driftstøtte som virkemidler. I Danmark har man favorisert kraft produsert fra vind og biomasse, samt i kombinerte kraftvarmeverk. I stedet for en direkte subsidie fra myndighetene har en del av støtten i Danmark vært finansiert gjennom kryss-
subsidiering. Kraftleverandørene er pålagt å kjøpe den nevnte kraften til garannte priser, og fordeler merknadnaden ved dette på all kraft omsatt. Dette innebærer at forbrukerne, via strømregningen, betaler støtten som går til den fornybare energien.

Et alternativ til å gi direkte støtte til fornybar energi er å sette krav om at en viss mengde av kraft eller energi som omsettes skal være sertifisert "grønn" energi, og at leverandørene av kraft og energi må kjøpe slike sertifikater for tilsvarende prosentvis andel av deres kraft energiomsetning, dvs. å etablere et sertifikatmarked. Dette er en variant av produksjonsstøtte, men baserer seg på markedsmekanismer istedenfor offentlig styring.

Sverige, Nederland, Belgia og Australia er blant de land som har innført sertifikatsystem rettet mot fornybar kraftproduksjon. Den største usikkerheten er knyttet til at etterlyselen vil være gitt av sertifikatkravet, mens tilbudet kan være relativt fast på kort sikt. Det kan derfor være vanskelig å sikre en effektiv prisoppsett dersom ikke markedet og utvalget av potensielle prosjekter er stort nok (ECON, 2001). Usikkerheten omkring prisoppsettet i sertifikatmarkedet stiller også spørsmål ved hvorvidt sertifikatmarkedet er tilstrekkelig å sikre vesentlige nye investeringer i "grønn" kapasitet. Varigheten til et sertifikatsystem spiller også en rolle for hvorvidt et slikt system vil utføre tilstrekkelige investeringer, og for eksempel viser erfaringer fra Sverige, hvor dagens system kun gjelder frem til 2010, at en så pass kort tidshorisont ikke er tilstrekkelig for å utløse større investeringer.

Et alternativ til investerings- eller produksjonsstøtte er ulike former for skattelettelse til produsenter av ny fornybar energi. Den vanligste formen er fradragsrett for investeringer i slik energi. I Danmark betaler produsenten ikke skatt på de første 3.000 DKK av inntekten fra vindenergien, en variant som har størst betydning for små produsenter. I den videre drøftingen har vi valgt ikke å se nærmere på denne typen støtte.

4.1.3 Administrative virkemidler

Administrative virkemidler er som regel "mykere" enn de to andre kategoriene, og prøver i større grad å påvirke aktørene til å gjøre de riktige valgene mer eller mindre frivillig. Kategori en inkluderer tiltak som utdanning, informasjon, kursvirksomhet, sosialt press, ulike typer av forhandlinger, etablering av nettverk og såkalt frivillige avtaler.

De administrative virkemidlene som er relevante for grønn varme, er først og fremst såkalte grønne innkjøp og informasjon.

Grønne innkjøp er en statlig ordning som betyr at statlige aktører skal ta hensyn til miljø ved innkjøp av varer og tjenester og ved investeringer. I dag skal nye statlige bygginger over 500 kvm bygges med systemer for bruk av vannbåren varme. Regjeringen har foreslått å utvide denne ordningen til å gjelde alle offentlige bygginger, ikke bare de statlige. En grunnleggende tanke bak grønne innkjøp er at staten skal virke som et forbilde for øvrige næringsliv.

Ulike typer av informasjon om vannbåren varme kan bidra til å påvirke etter- spørselen etter slike systemer. Informasjon er imidlertid det svakeste styrings-
Instrumentet som myndighetene kan bruke, i det man her har minst kontroll over den faktiske effekten av virkemidlet. Forbud er det sterkeste styringsinstrumentet, mens for eksempel avgifter er et eksempel på virkemiddel med middels styringskraft. Informasjon som virkemiddel kan være effektivt for å skape oppmerksomhet og økt kunnskap, men egner seg ikke som eneste virkemiddel hvis målgruppen må gjøre en for stor innsats for å gjennomføre ønsket atferd. Det er også viktig å være klar over at informasjon kun kan løse problemer som skyldes mangel på informasjon.

Administrative virkemidler kan påvirke atferden til aktørene på en positiv måte, men slike virkemidler er ikke egnet til å sikre grønn varme tilsvarende rammebetingelser som grønn el. Disse virkemidlene kan imidlertid brukes sammen med andre og mer direktevirkende virkemidler for å forsterke effekten.

4.2 Finansiering over statsbudsjettet eller gjennom markedet

Støtte til grønn energi kan enten bevilges direkte over statsbudsjettet eller av markedsaktørene selv gjennom forskjellige ordninger. Støtten kan enten kanaliseres i form av investeringsstøtte eller som produksjons- eller driftsstøtte. Hvordan støtten finansieres har først og fremst betydning for forutsigbarheten, men det vil også påvirke den samfunnsøkonomiske kostnaden ved ordningen. Et annet moment som kan ha betydning ved utformning av støtte er at støtte over statsbudsjettet er regulert gjennom EØS-avtalen.

En generell ulempe med tilskudd finansiert over statsbudsjettet er videre at disse er gjenstand for årlige budsjettforhandlinger og dermed mindre stabile over tid enn aktørfinansierte ordninger. Et relevant eksempel er investeringsstøtten til vindkraft som flere ganger er blitt endret, fra 25 prosent før 2001, til 15 prosent en periode og nå med en maksgrense på 25 prosent.

Samfunnsøkonomisk merkostnad ved skattefinansiering

Hva gjelder samfunnsøkonomiske omkostninger er det gjort beregninger som viser at tiltak støttet over statsbudsjettet, dvs. over skatteseddlen, har en såkalt skattekostnad. Skatter og avgifter påfører økonomien et samfunnsøkonomisk tap, som man må ta hensyn til når man anslår totale kostnader for et tiltak som skal finansieres gjennom skatter og avgifter. Kostnadsberegningstutvalget (NOU 1997:27) anbefaler at alle kostnader som skal finansieres over offentlige budsjetter multipliseres med 1,2 ved beregning av de samfunnsøkonomiske kostnadene knyttet til det aktuelle prosjektet eller tiltaket. Det betyr at man antar at for hver krone staten krever i skatt, tape samfunnet 20 øre grunnet mindre optimal fordeling av ressurser. Subsidier og rent skattefinansierte tiltak er altså 20 prosent dyrere enn de rene utleggene tilsier.
ESAs regler for miljøstøtte

Retningslinjene angir de kriteriene som ESA vil legge til grunn for vurderingen av om støttetiltak kvalifiserer som unntak fra det generelle forbudet i artikkel 61 i EØS-avtalen. EØS-avtalen åpner for at investeringsstøtte til ulike formål kan gis, mens driftsstøtte i utgangspunktet er forbudt. Det kan imidlertid gis unntak fra dette forbudet for støtte til regional utvikling, miljøtiltak og krise og omstrukturering.

For at offentlig støtte skal omfattes av støttebestemmelsene i EØS-avtalen må følgende fire vilkår være oppfylt:

1. Støtten må være gitt av staten eller av offentlige midler
2. Støtten må vri konkurransen eller true med å vri konkurransen
3. Støtten må begunstige enkelte foretak eller produksjon av enkelte varer
4. Støtten må være egnet til å påvirke samhandelen mellom EØS-landene.

I forbindelse med overgang fra sluttbehandlingsavgift til utslippsavgift ved forbrenning av avfall, ønsket man å innføre en støtte/subsidie pr. produsert enhet energi for å stimulere forbrenningsanleggene til å utnytte mest mulig av den energien som produseres. Denne støtten har imidlertid ikke blitt godkjent av ESA, så foreløpig gis det ikke noen støtte eller avgiftslette til forbrenningsanlegg med energiutnyttelse.

Forvaltning av støtten

Uansett om ordningen finansierer over statsbudsjettet eller av aktørene i markedet, må den forvaltes av et sentralt organ. I dag forvalter Enova støtten til grønn energi, og det er naturlig å forutsette at Enova får ansvar for forvaltningen av elsertifikatene, og følgelig også av en eventuell sertifikatordning for varme.

Det er verdt å merke seg at Norge i dag ikke har noen støtte til fornybar energi som går direkte over statsbudsjettet. Som nevnt i kapittel 2 har all støtte siden 2004 blitt finansiert via påslaget på nettarifen, dvs. at den blir finansiert av markedsaktørene.

4.3 Rammebetingelsene er viktige for utbygger

En rekke aktører har investert eller vurderer å investere i ny fornybar energi. Hensynet til økonomi er viktig for alle aktørene. Betydningen av andre faktorer, for eksempel et ønske om å bidra til bedre miljø, å bidra til å utvikle rimeligere teknologi, eller til å oppnå et godt renommé som selskap, kan spille inn i varierende grad for ulike aktører. Forventninger om framtidige priser og kostnader påvirker selvsagt aktørenes ønsker om å investere i dag. Forventet nåverdi og usikkerheten i forventningene er begge viktige for investeringene. Siden prosjek-
tene innenfor nye fornybare energikilder oftest er store og meget kapitalintensive, er usikkerheten viktig.

For en økonomisk aktør vil økt (eller redusert) usikkerhet om utviklingen i rammevilkårene virke på lignende måte som økte (eller reduserte) kostnader. Stabil politikk, vil derfor normalt være å foretrekke for ustabil politikk, med mindre politikkområdet oppleves som irrelevant. Undersøkelser om bedrifters politiske ønsker har derfor som typiske resultat at aktørene ønsker seg stabile (og gode) rammevilkår. En helt stabil offentlig politikk er imidlertid verken mulig eller ønskelig. Verden endres kontinuerlig på så mange områder at det er opplagt at politikken også må justeres. Eksempelvis dersom internasjonale rammebetingelser endres eller selv det teknologiske fundamentet for en regulering endres må også reguleringen endres. Det utbredte ønsket om stabile rammevilkår må derfor tolkes som et ønske om rasjonelle politiske endringer, basert på kunnskap om konsekvenser for næringsvirksomhet.

Forventningene er avgjørende

Økt tiltro til gode framtidige rammevilkår kan være vel så viktige som den faktiske størrelsen på avgiftsfritak og subsidier. Men på den andre siden: Det mest håndfaste politiske signalet om at framtidige rammevilkår vil bli bedret, er konkrete politiske vedtak ”i dag”. Tidligere politiske vedtak om støtte til fornybar energiproduksjon har således dels bidratt til bedret lønnsomhet og dermed til økte investeringer, men kanskje minst like viktig, til tiltro til at virkemidlene vil bli opprettholdt i framtiden og kanskje også trappet ytterligere opp.
5 Varmesertifikater

Som nevnt i kapittel 3 og 4 er sertifikater for grønn energi et økonomisk virke-
middel som søker å utnytte markedsmekanismer for å sikre effektivitet. De
sertifikatsystemene som så langt er etablert, er i prinsippet rettet mot fornybar
kraftproduksjon, og det eneste systemet som vi kjenner til som også inkluderer
noen form for varme er det australske systemet, se vedlegg 1 for en beskrivelse av
dette systemet og håndteringen av varmtvannsberedere oppvarmet ved hjelp av
solvarme.

I en tidligere utredning for OED har ECON vurdert mulighetene for å innføre et
sertifikatmarked for grønn varme, se ECON (2002). Vår drøfting av virkemidlet
er basert på at det utformes på den måten som anbefales i ECON (2002).

5.1 En mulig utforming av et
varmesertifikatmarked

Essensen i et sertifikatmarked for varme er at produksjon av grønn varme gir rett
til sertifikater som blir utstedt av en sertifiseringsmyndighet, mens all bruk av
varme (også grønn) medfører plikt til å kjøpe en viss mengde sertifikater. Sertifikatene omsettes fritt på et marked. La oss for eksempel tenke oss et andels-
krav på 10 prosent og et fjernvarmeanlegg som produserer 50 GWh basert på bio-
brensel og 10 GWh basert på olje, dvs. totalt 60 GWh. Anlegget ville da bli tildelt
sertifikater tilsvarende 50 GWh og ha en kjøpsplikt på 6 GWh (10 prosent av 60
GWh). Det gir netto sertifikatrett på 44 GWh som selskapet kan selge på
sertifikatbørsen. Dette er tilsynelatende problemfritt. Det er imidlertid mange
praktiske utfordringer med dette, for eksempel knyttet til måling der måle-
instrumenter ikke finnes, hvem som faktisk skal bli tildelt sertifikater, og hvem
som faktisk skal ha plikt til å kjøpe disse sertifikatene. Noen av disse utford-
ingene gjelder også for elsertifikater, men på mange måter er varmemarkedet mer
sammensatt enn elektrisitetsmarkedet, og de praktiske utfordringene ved ut-
forming av en sertifikatordning for varme er generelt større enn for elektrisitet.
Likevel er ikke de praktiske utfordringene så store at de automatisk diskvalifiserer
muligheten for et sertifikatmarked for grønn varme.

Sertifikatordninger for grønn varme er tenkt å ivareta visse målsetninger, som for
eks. kostnadseffektiv utbygging av grønn energiproduksjon, teknologi-
uttakking og selvforsyning. Men en sertifikatordning for grønn varme kan praktisk
utformes på mange måter, med forskjellige egenskaper i forhold til "funksjonalit-
et" og administrasjonskostnader. En del av de egenskaper ordningen ideelt sett
burde ha er:
• **Inkluderende:** Sertifikatordningen bør omfatte mest mulig av forbruket slik at kostnadene ved å produsere grønn varme spres over flest mulig forbrukere, og slik at det er de mest kostnadseffektive løsningene som blir valgt.

• **Ikke subsidiering av lønnsomme teknologier:** Det er ikke ønskelig at det skjer en overføring fra forbrukere til produsenter som benytter lønnsomme teknologier.

• **Lave administrasjonskostnader:** For å minimere administrasjonskostnadene er det viktig at ordningen er ”automatisk”, for eksempel at sertifikatmyndigheten ikke må ta mange skjønnsbaserte avgjørelser, og at ordningen er enkel for aktørene.

• **Få ekstrainvesteringer:** En sertifikatordning for varme kan fordre ekstra-investeringer i måleutstyr, og mengden av slike ekstrainvesteringer vil variere med utformingen av ordningen.

• **Lave kontrollkostnader:** En sertifikatordning innebærer utgifter til kontroll av oppgitte måleverdier. Dersom ordningen kan utformes slik at ingen har mulighet eller incentiver til å oppgi feil verdier, vil ordningen være billigere å administrere.

• **Ikke involvere sluttbruker:** Kostnadene ved å involvere sluttbrukere i ordningen kan være store. Et forhold er alternativkostnaden av sluttbrukernes tid, et annet forhold er at små aktører kan skape ”friksjon” i ordningen.12 Som for elsertifikater er det mulig å løfte sertifikatordningen for varme opp ett nivå over sluttbrukerne.

• **Mikroøkonomiske egenskaper:** Den praktiske utformingen av ordningen må ikke gjøre at aktørenes beslutninger om drift og investeringer i vesentlig grad blir vridd bort fra det samfunnsøkonomisk optimale.

I ECON (2002) brukes hovedprinsippet at sertifikatrett bare skal tildeles *ny* grønn produksjon, men at det skal gis sertifikater for *alt* omsatt grønt brensel, dvs. uansett om dette produseres i et nytt eller gammelt anlegg. Et unntak er at både nye og gamle avfallsforbrenningsanlegg bør ha sertifikatrett, begrunnet med at avfallet er et grønt brensel hvor det vil være vanskelig å legge sertifikatretten på brensellet. Hva som til enhver tid kvalifiserer som grønn produksjon og grønt brensel skal være opp til sertifikatmyndigheten. For at ikke sluttbrukerne skal behøve å bli involvert i ordningen, bør sertifikatene tildeles fjernvarmeanlegg, brenselsleverandører og utstyrslverandører.

Kjøpsplikten skal som hovedprinsipp pålegges all bruk av varme, både ny og gammel. Kravet betyr at en viss andel av varme-produksjonskost skal være ”grønn”. Det skjer ved at forbruker eller leverandør pålegges å kjøpe sertifikater for grønn varme tilsvarende en viss andel av varmen som produseres. Også for prosesser som har sertifikatrett vil det ilegges kjøpsplikt for en andel av varmen, slik at kjøpsplikten for disse vil virke som et fratrekke i sertifikatktildelingen. Igjen er det ønskelig å holde sluttbrukerne av varme utenfor ordningen, og derfor er det fjernvarmeanlegg, brenselsleverandører og utstyrslverandører som bør ilegges kjøpsplikten.

12 "Friksjon” i ordningen kan for eksempel være at husholdninger glemmer å registrere seg i ordningen, fyller ut skjemaer på feil måte eller unnlater å oppfylle en eventuell kjøpsplikt.
Varmesertifikater for omsatt brensel og varmeproduksjon

Tabell 5.1 og 5.2 gir en oppsummering av den sertifikatordningen for henholdsvis egenprodusert varme og fjernvarmeanlegg som anbefales i ECON (2002). For en nærmere beskrivelse av ordningen vises til denne rapporten.

Tabell 5.1 Oppsummering av anbefalt sertifikatordning for egenprodusert grønn varme

<table>
<thead>
<tr>
<th>Brensel</th>
<th>Grønn varme</th>
<th>Ikke grønn varme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Måling av levert brensel</td>
<td>Måling av levert brensel</td>
</tr>
<tr>
<td></td>
<td>*Kjøpsplikt for brensel-</td>
<td>*Kjøpsplikt for brensel-</td>
</tr>
<tr>
<td></td>
<td>leverandør for alt levert brensel</td>
<td>leverandør for alt levert brensel</td>
</tr>
<tr>
<td></td>
<td>Sertifikatrett til brensel-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>leverandør for levert grønt brensel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ikke tidsavgrenset</td>
<td></td>
</tr>
<tr>
<td>Egen Brensel</td>
<td>Kun store industrielle aktører i denne kategorien inkluderes.</td>
<td>Inkluderes ikke i sertifikatordningen</td>
</tr>
<tr>
<td>Ikke brensel</td>
<td>Måling av installert kapasitet</td>
<td>Måling av installert kapasitet</td>
</tr>
<tr>
<td></td>
<td>*Kjøpsplikt for leverandør av utstyr</td>
<td>*Kjøpsplikt på leverandør av utstyr</td>
</tr>
<tr>
<td></td>
<td>Sertifikatrett til leverandør av utstyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidsbegrenset</td>
<td></td>
</tr>
</tbody>
</table>

For brenselbaserte teknologier, for eksempel pelletskaminer, vil ordningen fungere slik at leverandøren av brensel til sluttbrukeren har en kjøpsplikt for alt omsatt brensel tilsvarende andelskravet. Samtidig får leverandøren sertifikater for alt omsatt brensel som regnes som grønt. Leverandøren får dermed en netto av sertifikater (lik sertifikatrett-kjøpsplikt), og denne kan enten være positiv (hvis leverandøren selger mer grønt brensel enn andelskravet) eller negativ (hvis leverandøren selger mindre grønt brensel enn andelskravet). Overskuddet av sertifikater selges på sertifikatmarkedet, mens et underskudd må dekkes inn gjennom kjøp av sertifikater på dette markedet. Både sertifikatrett og kjøpsplikt beregnes ut fra et antatt gjennomsnittlig energiinnhold i brensel og en antakelse om effekten på kaminen. For standardiserte brenser vil denne sjablonberegningen være forholdsvis uproblematisk.

Det er høyst usikkert hvorvidt ikke-brenselbaserte teknologier bør være med i en ordning med varmesertifikater, da mange av disse heller kan klassifiseres som energieffektiviseringstiltak. Aktive solfangere kan det imidlertid argumenteres for bør være med i ordeningen. Ved salg av et anlegg vil leverandøren få rett til sertifikater tilsvarende antatt varmeproduksjon over et gitt antall år (for eksempel 10 år). Hvorvidt kjøper av anlegget får et fratrekk i prisen basert på antatt verdi av disse sertifikatene ved kjøpstidspunktet eller om han får tilbakebetalt et beløp basert på faktisk sertifikatpris etter at sertifikatene er solgt vil først og fremst være et spørsmål om hva som er mest hensiktsmessig. Her må det tas hensyn til risiko i forhold til utviklingen i sertifikatprisene og administrative kostnader knyttet til en etterskuddsbetalning.
Likebehandling av ny fornybar varme og kraft

Tabell 5.2 Oppsummering av anbefalt sertifikatordning for fjern- og nærvarme

<table>
<thead>
<tr>
<th>Brensel og ikke brensel</th>
<th>Grønn</th>
<th>Ikke grønn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Måling av levert varme</td>
<td></td>
<td>Måling av levert varme</td>
</tr>
<tr>
<td>Kjøpsplikt for fjernvarmeanlegg for all levert varme</td>
<td></td>
<td>Kjøpsplikt for fjernvarmeanlegg for all levert varme</td>
</tr>
<tr>
<td>Sertifikatrett til fjernvarmeanlegg for all ny produksjon og ev. gammel avfallsvarme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikke tidsavgrenset</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For fjernvarmeanlegg vil sertifikatene utdeles basert på den andelen av levert varme som klassifiseres som grønn. Dette betyr at leverandører av biobasert brensel til fjernvarmeanlegg ikke får sertifikater, men de vil kunne ta ut en høyere pris for brensel ettersom fjernvarmeanlegget vil ha høyere betalingsvillighet for dette brenslet. Tilsvarende vil leveranser av ikke-grønt brensel til fjernvarmeanlegg ikke legges kjøpsplikt, her er det isteden fjernvarmeanlegget som får kjøpsplikten for all levert varme. For avfallsbasert varme må det gjøres et fratrekk for den ikke-organiske andelen av avfallet, ettersom dette avfallet ikke betraktes som en fornybar energikilde. Her vil det vore naturlig å bruke samme forholdstall for blandet avfall som brukes ved beregning av CO₂-delen av utslippsavgiften for forbrenningsanlegg.

For leverandøren av biobrensel kan det være problematisk at leveranser til egenprodusert varme er sertifikatpliktig/berettiget, mens leveranser til fjernvarmeanlegg ikke er det. Hvor stort dette problemet er i praksis kan vi ikke si noe om uten en grundigere analyse av markedsstruktur og en mer detaljert beskrivelse av sertifikatsystemet.

Varmesertifikater kun for målt varmeproduksjon

Et alternativ til den oven skisserte utformingen av varmesertifikatmarkedet er et marked hvor sertifikater kun tildeles målt varmeproduksjon. Det har skjedd en utvikling innenfor måleutstyrsteknologien, og i dag finnes måleutstyr for mindre anlegg til en overkommelig kostnad. Dette betyr at det ikke vil kreves vesentlige tilleggsinvesteringer for å kunne delta i et varmesertifikatmarked som kun omfatter målt varmeproduksjon. Fordelen med et slikt system er at støtten gis til faktisk varmeproduksjon, dvs. at det er mer treffsikkert i forhold til den politiske målsettingen om et gitt omfang på varmeproduksjonen. Ulempen er at det vil involvere sluttbruker i større grad enn den oven skisserte ordningen, og dermed gi høyere administrasjons- og kontrollkostnader.

5.2 Varmesertifikatenes egenskaper

5.2.1 Effektivitet og måloppnåelse

I den skisserte sertifikatordningen brukes sjablongberegning for å ”oversette” fra kapasitet eller fra brenselsmengde til levert varme i tilfeller der det ikke er kostnadeffektivt å måle varme, dvs. alle tilfeller der aktørene selv ikke måler varme. En slik forenkling, som sjablongberegning innebærer, vil føre til at aktører
har andre incentiver enn de ville hatt med måling av varme, og de vil foreta tilpasninger som ikke nødvendigvis er samfunnsøkonomisk optimale.

Problemer knyttet til sjablongberegninger basert på brensel

Når det gjøres sjablongberegninger for teknologier som benytter brensel, brukes et gjennomsnittstall for energiinnholdet i brensel og virkningsgraden i brenneren for å anslå levert varme. Det betyr at levert varme undervurderes for produsenter som bruker brensel og brener av høy kvalitet, og overvurderes hvis det motsatte er tilfelle. Sjablongberegning er kun en tilnærming, og den har virkning på aktørenes incentiver til valg av kvalitet på brenneren (høyere virkningsgrad betyr høyere pris) og brenselkvalitet:

I ECON (2002) vises det at en sjablongberegning av sertifikatrett per brenselenhet gir svakere incentiver til investering i anlegg med høy virkningsgrad enn om levert varme hadde vært lagt til grunn. Tilsvarende gir sjablongavregning av kjøpsplikt i forhold til brensel sterkere incentiver. Svakere incentiver til investering i kvalitetsanlegg vil også gi svakere incentiver til utvikling av teknologien enn om levert varme hadde vært lagt til grunn. I ECON (2002) fremholder det imidlertid at virkningsgrad stort sett er gitt av tilgjengelig teknologi, og at selv om sertifikatene isolert sett gir incentiver for høyere eller lavere virkningsgrad, vil det ha lite å si for virkningsgraden i de anleggene som faktisk blir installert.

13 Et eksempel for å illustrere dette poenget er en leverandør av biobrensel (ved) som får tildelt sertifikater per levert mengde brensel. Leverandøren kan tørke veden, som gjør at den brener bedre og er lettere, men den beholder volumet og energiinnholdet. Våt ved er altså forskjellig fra tørr ved i at den brener dårligere og er tyngre. Med sertifikatrett på X sertifikater per tonn levert ved, der X er gjennomsnittlig nyttiggjort energi i et tonn ved, vil leverandøren ha incentiver til ikke å tørke veden i det hele tatt for å få flest mulig sertifikater. Når ingen tørker veden må sjablongen, X, oppdateres, og tilpasningen stabiliseres med at ingen tørker veden og X er lik gjennomsnittlig nyttiggjort energi i våt ved. Hvis sertifikatrett på X sertifikater isteden beregnes per kubikk/favn levert ved, der X er gjennomsnittlig nyttiggjort energi i en kubikk/favn ved, vil ikke sertifikattildelingen ha noen virkning på incentivene til å tørke veden. Men også med sertifikattildeling per volum kan man tenke seg måter leverandøren kan forringe vedkvaliteten for å lure ordningen.

14 En mulig prosedyre kan være at leverandøren sender et skjema til sertifikatmyndigheten for hver handel som kjøperen kvitterer på. Der står pris og mengde. Mengde brukes til å beregne sertifikattildelingen, og dersom pris er signifikant under standard pris (noe som tyder på at kunden har fått ved av lav kvalitet) foretas en kvalitetskontroll av sertifikatmyndigheten.
Problemer knyttet til sjablongberedning basert på installert kapasitet

Varmebehovet kan beregnes basert på antall kWh per kvadratmeter bygning per år for forskjellige kategorier, for eksempel boliger og næringsbygg i Sør-Norge og boliger og næringsbygg i Nord-Norge. Flere kategorier gjør at beregnet varmebehov blir riktigere, men øker også administrasjonskostnadene.

Virkningene på drifts- og investeringsincentivene av å benytte gjennomsnittverdier er:

- **Driftsincentiver:** Sertifikattildelingen er ikke avhengig av hvor mye anlegget faktisk er i drift, og bruk av gjennomsnittsverdier for sertifikattildelingen har derfor liten virkning på driftsbeslutninger.

- **Investeringsincentiver:** Brukere med større varmebehov enn gjennomsnittet får færre sertifikater enn om faktisk varmebehov hadde vært lagt til grunn, og vice versa for brukere med mindre varmebehov enn gjennomsnittet. Dette fører ikke til at en forbruker med mindre behov har sterkere incentiver til å investere enn en med større behov, men det kan føre til at noen som ville investert i varmepumpe med korrekt behovsberegning, ikke gjør det med sjablongberegning, eller at noen som ikke ville installert med korrekt behovsberegning, gjør det med sjablongberegning – altså vridninger mellom investeringer.

Et alternativ til sertifikater basert på målt kapasitet og varmebehov er at sluttbrukere som installerer varmepumpe (eller annen tilsvarende teknologi) også installerer varmemåler og får tildelt sertifikater basert på målt varme. Den viktigste ulempen med en slik ordning er at sluttbrukerne kan få incentiver til å installere for store anlegg og fyre for å få sertifikater uten at det er behov for varme. Videre vil det medføre kontrollkostnader å la sluttbrukerne måle sin egen sertifikatrett. Et siste poeng er at incentivene til energieffektivisering blir svakere dersom økt forbruk av varme gir flere sertifikater slik det gjør med måling av varme, men ikke med måling av kapasitet.

15 La oss si at sjablongen som benyttes for varmebehov er et kontinuerlig varmebehov på 10 kW halvparten av tiden i fire vintermåneder og et kontinuerlig varmebehov på 4 kW halvparten av tiden i de resterende åtte månedene. En varmepumpe med kapasitet på 10 kW vil da produsere 10 kW x 4 x 30 x 50 prosent x 24 timer om vinteren og 4 kW x 8 x 30 x 50 prosent x 24 timer resten av året. Det gir 25.920 kWh. Dersom virkningsgraden på varmepumpen er slik at 1 kWh tilført elektrisitet gir 4 kWh levert varme, ganger vi totalproduksjonen med 0,75 og får at det skal tildeles sertifikater for 19.440 kWh i året. (I virkeligheten er ikke en varmepumpes virkningsgrad så enkelt definert, men vil være avhengig også av temperaturforskjeller.)
Spiller det rolle hvem som får sertifikatene?

Incentiver til teknologutvikling

Sertifikater tildeles til eksisterende teknologier, og det vil være naturlig at den myndighet som administrerer og forvalter ordningen avgjør hvilke teknologier som til enhver tid skal klassifiseres som grønn. Dette betyr at man ved utvikling av nye teknologier ikke kan ta for gitt at man vil få sertifikatrett. Sertifikat-systemet vil derfor ikke gi noen direkte incentiver til utvikling av nye teknologier.

5.2.2 Finansiering av støtten

Innføringen av et sertifikatmarked innebærer i utgangspunktet at støtteordninger for ny fornybar energi flyttes fra Statsbudsjettet – der de indirekte finansieres via skattepenger – til et marked der forbrukerne betaler støtten direkte til aktørene. Dette gir grunnlag for reduserte kostnader ved å frembringe ny fornybar kraft på flere måter:

- Man unngår skyggekostnaden ved beskatning.
- Investeringer skjer mer effektivt – man får mer fornybar varme for pengene
- Administrasjonskostnadene forbundet med direkte støtteordninger reduseres eller faller bort.

Ordningen kan også gi økte kostnader ved at:

- Kostnadene ved administrasjonen og driften av sertifikatsystemet er høyere enn driften av et administrert system.
- Økt usikkerhet om inntektssiden (sertifikatpris og kraftpris) kan gi høyere avkastningskrav og dermed høyere kostnader.

I ECON (2004) drøftes konsekvenser av innføring av en ordning med el-sertifikater i Norge. Noen av disse momentene vil i prinsippet være like for en sertifikatordning for varme, dette gjelder bl.a. endringer i statens proveny-inntekter. Disse inntektene vil endres som følge av:

- Økte inntekter til staten via moms grunnet økt produksjon av fornybar kraft og varme.
- Andre ordninger som eksisterer pr. i dag vil bli delvis overflødige, dette gjelder en god del av investeringsstøtten som gis via Enova og muligens også Innovasjon Norge.
- Økte inntekter via en straffeaavgift for ikke oppfylt kvoteplikt.
• Redusert påslag på nettariffen. Det vil være naturlig at påslaget reduseres når ny fornybar kraft- og varmeproduksjon finansieres via sertifikatmarkedet.

5.2.3 Risiko og forutsigbarhet

Sertifikatene skal bidra til å sikre en langsiktig prissetting som vil gi potensielle investorer et bedre bilde av fremtidige inntekter, samtidig som det skjer en inntektsoverføring fra forbrukerne til produsenten av grønn varme som er stor nok til å realisere myndighetenes mål for fornybare energikilder.

Det er vesentlig at sertifikatmarkedet er tilstrekkelig langsiktig. I Sverige hvor den første og pågående sertifikatperioden kun strekker seg frem til 2010 viser erfaringene så langt at man ikke har klart å utløse nyinvesteringer i tilstrekkelig omfang for å nå målet om 10 TWh i 2010. Dette tolkes ikke som et bevis på at sertifikatsystemet ikke er tilstrekkelig effektivt for å utløse nyinvesteringer, men at systemet ikke er tilstrekkelig langsiktig.

5.2.4 Administrative kostnader

Administrative kostnader omfatter både merkostnader til en sentral administrasjonsoverføring og merkostnader til administrasjon hos aktørene i markedet – produsenter, distributører og sluttbrukere.

Kostnadene kan deles i to grupper:

• Kostnader forbundet med administrasjon, salg og kjøp av sertifikater.

• Administrasjonskostnader i det offentlige, knyttet til godkjenning av anlegg, drift av datasystemer og kontroll av kvoteplikten. I tillegg kommer eventuelt økte kostnader til konsesjonsbehandlingser, etc.

Kostnader for aktørene

Produsenter av ny fornybar varme vil ha driftskostnader i forbindelse med salg og administrasjon av et sertifikatmarked, men hvorvidt disse vil være større eller mindre enn i et system med administrerte, direkte støtteordninger har vi ikke anslag på.

Kjøp og salg av sertifikater vil imidlertid medføre kostnader i distribusjonsleddet som ikke i tilsvarende grad vil være tilstede ved investeringsstøtte eller administrert produksjonsstøtte.

Kostnader for det offentlige

Det er en rekke administrative kostnader forbundet med innføringen av et sertifikatmarked. I NVE (2004) er det et avsnitt om økonomiske og administrative konsekvenser, hvor følgende kostnader knyttet til et sertifikatmarked er vurdert:

• Godkjenning av anlegg. Kostnadene avhenger av i hvilken grad godkjenningen skjer på basis av selvangivelse eller aktiv kontroll av nye anlegg. Videre kommer det an på sammensetningen av anlegg.

• Drift av datasystem. I det svenske elsertifikatsystemet er det 3 personer i Svenska Kraftnät som jobber med dette, men ikke på full tid. NVE regner
med at aktiviteten vil få omtrent samme omfang i Norge ved et felles norsk-svenskt elsertifiktatmarked. Hvis et varmesertifikatmarkedd innføres kan det tenkes at disse kostnadene vil øke marginalt.

- Kontroll av oppfylt kvoteplikt.

Basert på dette anslår NVE at driften av et etablert system for elsertifikater vil kreve til sammen ca. 10 årsverk til anleggsgodkjenning, datadrift og pliktkontroll. Det finnes ikke beregninger på hvor store kostnadene vil være for et marked for varmesertifikater, men som et ”best guess” kan det anslås tilsvarende kostnader.

I tillegg til de løpende kostnadene vil det oppstå kostnader i forbindelse med oppstart av systemet. Opprinnelig oppbygging av IT-støtte for det svenske elsertifikatsystemet kostet i størrelsesorden 20 mill. kr.

Kontrollkostnader

Aktører som bruker egenprodusert brendsel

Aktører som produserer egen varme med eget brendsel er ikke involvert i noe kundeforhold som kan begrense kontrollkostnadene. Eksempler på slike aktører er industri som generer biobrensel (bark, avkapp, sagflis) som et biprodukt og som bruker det til å dekke eget varmebehov, eller det kan være skogseiere som fyrer med egen ved.

To forhold taler for at kontrollkostnadene er moderate for store industrielle kunder. Det første er at det kunne skade deres renommé dersom de forsøkte å jukse med en miljøordning. Det andre er at, så vidt vi kan skjonne, det vil være relativt få aktører i denne kategorien. Dette tyder på at det er hensiktsmessig å inkludere store industrieller med egenprodusert varme og egenprodusert brendsel i ordningen. Små forbrukere er det imidlertid ikke mulig å inkludere på en kostnadseffektiv måte.

Erfaringer fra det svenske elsertifikatsystemet

I det andre ettersynet av det svenske elsertifikatsystemet oppgis det at kun halvparten av de pengene sluttbrukerne betaler for elsertifikatene har havnet hos kraftprodusentene. En drøy tredjedel har gått til statskassen i form av moms og andre avgifter, og ca en sjettedel har havnet hos elleverandørene i form av administrative avgifter og eventuell gevinst.
5.2.5 Omfang

Grønn varmeproduksjon omfatter både anlegg med svært høye kapitalkostnader og lave, endog negative, variable produksjonskostnader (for eksempel avfallsforbrenning), og anlegg med lave investeringskostnader, men høyere produksjonskostnader (for eksempel lokale pelletsanlegg). Noen anlegg vil derfor kjøres uavhengig av prisen på de grønne sertifikatene og varmeprisen, mens andre vil være mer sensitive for disse prisene. I motsetning til norsk kraftproduksjon som er sterkt avhengig av varierende værforhold, kan det forventes at produksjonen av grønn varme vil være forholdsvis stabil fra år til år. Et frittstående marked for varmesertifikater vil derfor sannsynligvis ikke være like volatilt som elsertifikater basert på vann- og vindkraft.

Det finnes store forskjeller mellom grønne teknologier på en rekke viktige miljøområder (visuell forurensning, støy, utslipp til luft mv) hvilket betyr at sertifikatmyndigheten må ha muligheten til å ekskludere eller inkludere teknologier i ordningen etter hvert. Det betyr ikke at enkeltprosjekter som er blitt inkludert plutselig bør kunne ekskluderes. Muligheten til å ekskludere teknologier fra ordningen bør ikke fremheves, ettersom en slik usikkerhet vil gjøre det mindre attraktivt å investere i utvikling av ny teknologi.

Når man vurderer omfanget av sertifikatmarkedet er det noen, til dels motstridende, hensyn som må taes. For at et sertifikatmarked skal være effektivt må det være tilstrekkelig stort, eller rettere sagt det må omfatte tilstrekkelig mange aktører slik at ikke en eller et fåtall aktører har mulighet for å påvirke sertifikatprisen, dvs. utøve markedsmakt. Samtidig innebærer kontrollkostnadene at det er ønskelig å begrense antallet aktører.

Markedsmakt

Med markedsmakt forstår vi en situasjon hvor en eller flere aktører i et marked kan og vet at de kan påvirke prisen i markedet slik at de selv kommer bedre ut enn i frikonkurranse. Når det ikke er markedsmakt i et marked, har man det som kalles frikonkurranse. Da vil prisen per definisjon være definert av kryssningspunktet mellom etterspørselskurven og marginalkostnadskurven, se figur 5.1.

Figur 5.1 Priser (P_{FK}) under frikonkurranse med henholdsvis ledig kapasitet (figuren til venstre) og full kapasitetsutnyttelse (figuren til høyre)

Dersom det er markedsmakt på produsentsiden innebærer det at produsentene har en viss mulighet til å forflytte seg på etterspørselskurven. For å øke sin fortjeneste

Figur 5.2 Effekten av markedsmakt på produsentsiden

I et sertifikatmarked vil markedsmakt arte seg på samme måte som i den generelle beskrivelsen ovenfor. Et særtrekk ved et sertifikatmarked er at kundene blir pålagt å kjøpe en viss mengde sertifikater. Det er uviss hvor stor betalingsvillighet kundene har for å kjøpe flere sertifikater enn det de er pålagt, men det er ikke urimelig å anta at en får en svært bratt etterspøringskurve. Blant annet av denne grunn er det aktuelt å innføre et pristak på sertifikater. Det innebærer at ingen kunder vil kjøpe sertifikater for en høyere pris enn dette taket. Etterspørselen vil således få en knekk ved dette prisnivået, se figur 5.3.

Figur 5.3 Etterspøringskurven i et obligatorisk sertifikatmarked og produsentenes foretrukne tilpasning

Produsentene vil foretrekke å få en tilpasning i knekkpunktet. Da får de maksimal pris og volum. Hvis dette er en stabil situasjon over tid har man egentlig ikke et
marked, men en kombinasjon av subsidie og avgift. Subsidien betales til produsentene av varme eller kraft basert på ny, fornybar energi og blir lik pristaket. Avgiften betales av alle konsumentene og blir lik pristaket multiplisert med sertifikatkravet som er pålagt av myndighetene. Dersom kravet er at konsumentene skal kjøpe 10 prosent ny, fornybar energi blir m.a.o. avgiften en tiendedel av subsidien.

Hvilken utstrekning eller hvor langt og hvor ofte produsentene vil bevege seg oppover langs etterspørselskurven avhenger av en rekke forhold:

- Hvor mange konkurrenter det er. Jo flere konkurrenter det er, jo større vil fristelsen være for å være ”gratissasjer”, dvs. at man håper de andre vil holde tilbake produksjon og holde prisen oppe, mens man selv har full produksjon og dermed bare fordeler av markedsøkning. Grovt sett kan man si: "Alt annet likt: Jo flere konkurrenter, jo mindre markedsøkning."

- Hvor store etableringsbarrierer det er for nye aktører. Dersom prisen i markedet blir liggende over langsiktig grensekostnad innebærer dette en renprofitt for de etablerte produsentene. Denne renprofitten vil tiltrekke seg andre produsenter. Jo lettere det er for disse å etablere seg, jo vanskeligere er det å utøve markedsøkning som holder prisene over langsiktig marginalkostnad.

- Hvor høy prisen er i forhold til produsentenes marginale produksjonskostnader. Dersom prisen i frikonkurranse er høy i forhold til de marginale kostnadene, vil en produsent tape mye dekningsbidrag for hver enhet han holder tilbake (arealet B blir stort). Dersom prisen derimot kun er litt høyere enn de marginale kostnadene blir tapet ved utøvelse av markedsøkning lite.

- Hvor bratt etterspørselskurven er. Generelt vil det være lettere og mer lønnsomt for produsentene å utøve markedsøkning jo brattere etterspørselskurven er fordi en liten reduksjon i tilbudet gir en stor prisøkning.

Hovedproblemen i et sertifikatmarked med hensyn til markedsøkning er antakeligvis at man kan få en meget bratt etterspørselskurve, og at det, i hvert fall for store anlegg, kan ta lang tid å bygge ny kapasitet. Dette betyr at man kan få priser som ligger over langsiktig marginalkostnad i lengre perioder. Disse forholdene innebærer at man trenger mange konkurrenter og/eller overkapasitet for å få et velfungerende marked. Overkapasitet vil naturligvis være et problem for produsentene på lang sikt. Da får de ikke dekket sine kostnader. Hvorvidt markedsøkning kan bli et problem avhenger også av hvordan kravene utformes og ikke minst bygges opp over tid.

5.3 Et frittstående sertifikatmarked for varme eller knyttet til elsertifikatene?

Dersom et sertifikatmarked for elektrisitet kommer på plass, kan et eventuelt sertifikatmarked for varme enten integreres eller ikke integreres med dette. Integrasjon vil si at sertifikater for elektrisitet og varme er identiske og handles

Vi har i denne analysen gått ut fra et det ikke etableres et integrert sertifikatmarked som omfatter både el og varme. Begrunnelsen for det er at et slik marked ikke uten videre kan integreres med et internasjonalt marked som kun omfatter elektrisitet. Dersom målet er at kraftsektoren er en del av at internasjonalt sertifikatmarked mens det finnes et eget sertifikatmarked for varme, bør de to markedene holdes atskilte fra starten av. Det finnes imidlertid et eksempel på et elsertifikatmarked som har inkludert noe varmeproduksjon, nemlig det australske som blir nærmere beskrevet i vedlegg 1.

Hvis varmemarkedet ikke inkluderes i elsertifikatsystemet er alternativene å etablere et marked som likevel kan koples mot elsertifikatmarkedet eller å etablere et helt frittstående marked for varmesertifikater. En kopling av de to sertifikatmarkedene kan for eksempel bestå i mulighet for å bytte mellom el- og varmesertifikater under gitte vilkår eller justeringer av pristak og eventuelt prisgulv i forhold til utviklingen av sertifikatprisene.

Fordeler med et integrert sertifikatmarkør

Til tross for at det ikke ligger i mandatet å vurdere et integrert sertifikatmarked for el og varme, har vi valgt å spesifisere hvilke fordeler en slik ordning ville kunne ha. Fordelene ved integrasjon av de to markedene er:

- **Billigste grønne løsninger velges.** Dersom markedene er separate kan marginal grønn produksjon være dyrere i det ene markedet enn i det andre, men dersom markedene er integrerte realiseres grønn energi på billigst mulig måte.

- **Stordriftsfordeler.** Det er billigere å administrere et stort marked enn to mindre markeder.

- **Bedre fordeling av kostnadene.** Det er ikke samfunnsøkonomisk optimalt at deler av det ikke-grønne energiforbruket betaler en høyere sats for kostnadene ved grønn produksjon enn andre deler.

- **Stabile sertifikatprisrer.** Med et integrert sertifikatmarked vil tilbudet og etterspørselen være mer priselastiske på grunn av flere aktuelle teknologier. Det gir mer stabile sertifikatprisrer.
6 Investeringsstøtte

Støtte til investeringer i ulike typer bygninger, produksjonsutstyr og lignende, har tradisjonelt vært et mye brukt virkemiddel i norsk forvaltning. Som det fremkommer i kapittel 2, gis all støtte til fornybar energi i form av investeringsstøtte i dag. I dette kapitlet skal vi se litt nærmere på dette virkemidlets egenskaper, og hvordan det eventuelt kan brukes for å sikre ny, fornybar varmeproduksjon samme rammebetingelser som grønn el.

6.1 Utforming av investeringsstøtte

Investeringsstilskudd gis som støtte til finansiering av en nærmere bestemt investering. Som virkemiddel for å fremme bruken av grønn varme vil det kunne være aktuelt å gi støtte til investeringer i produksjonsutstyr for fornybar varme, (inklusive produksjon av brensel), transmisjonsrør og ovner, radiatorer og lignende hos sluttbruker.

ESAs retningslinjer for miljøstøtte gir maksimalt 40 prosent investeringsstøtte til energisparingsstiltak og til fremme av kombinert kraftproduksjon og oppvarming. Enova gir i dag i størrelsesorden 15 – 25 prosent investeringsstøtte gjennom sine programmer. For de fleste støtteordninger utarbeides det nærmere definisjoner av hvilke investeringer som er støtteberettigede, dette vil avhenge av bl.a. formålet med ordføringen.

Det stilles ofte krav om at støtten skal være utløsende, d.v.s. at investeringen ikke blir realisert uten støtte. Enova har et strengt krav om dette i sine programmer, og krever også at det ikke skal gis mer støtte enn hva som er nødvendig for å realisere programmet. Andre støtteordninger har ofte hatt som krav at andre finansieringsordninger (for eksempel lån i private banker) skal være uttømt før det søkes om støtte.

Støtteordninger kan ha kortere eller lengre varighet. De kan lanseres med en intensjon om å vare i en kortere periode for å utføre rask handling. Når støtteordningene har et omfang som er mindre enn etterspørselen, vil midlene måtte
rasjoneres i en koordinering eller prioriteres gjennom en individuell behandling av den enkelte søker.

6.2 Investeringsstøttens egenskaper

6.2.1 Incentiver til investeringer

Investeringsstøttet er et virkemiddel som er rettet inn mot å fremme investeringer, og bør derfor primært brukes der det er investeringer i ulike typer utstyr man ønsker mer av. Investeringsstøtte bidrar til at de ønskede investeringene gjennomføres, og gir ingen direkte incentiver til drift av det aktuelle anlegget. Dersom det er på driftssiden flaskehalsene ligger, for eksempel i form av høye driftskostnader, vil driftsstøtte eller andre tiltak for å redusere driftskostnadene være et bedre virkemiddel.

En viktig egenskap med investeringsstøttet er at den bidrar til å avlaste investorene og andre finansieringskilder for risiko knyttet til investeringen. Dersom investeringsrisikoen er betydelig, for eksempel hvis det er snakk om ny og for investorene ukjent teknologi, kan investeringsstøttet være et velegnet virkemiddel som også kan bidra til å utløse finansieringsstilsagn fra andre finansieringskilder.

Et krav om utløsende effekt for at støtte skal kunne gis, kan være vanskelig å operasjonalisere. Det kan i mange tilfeller være nesten umulig å vurdere på forhånd om et prosjekt vil bli realisert eller ikke uten støtte. På enkelte områder, for eksempel investeringer i nye, ukjente energisystemer kan det imidlertid være svært sannsynlig at prosjektene ikke realiseres uten støtte. Motsatt vil det være viktig å unngå å støtte investeringer i teknologier som uten tvil ansees som lønnsomme. En støtteordning som er for omfattende kan føre til at investorene bruker ressurser på å få tilskudd i stedet for å søke etter muligheter for annen finansiering.

6.2.2 Finansieres over statsbudsjetter eller av markedet

En støtteordning kan enten finansieres over statsbudsjettet eller i markedet gjennom påslag i for eksempel nettariffen slik Enovas støtteordninger delvis finansieres. Finansiering over statsbudsjettet bidrar som ovenfor nevnt til vridninger i økonomien som gir samfunnsøkonomiske kostnader. Finansiering gjennom øremerkede avgifter/påslag på en vare bidrar også i utgangspunktet til samfunnsøkonomiske kostnader, ved at forbruket av den aktuelle varen reduseres.
Hvor store kostnadene blir, avhenger bl.a. av prisfølsomheten (priselastisiteten) for varen. Generelt kan man si at varer med lav priselastisitet er gunstige beskatningsobjekter, siden en avgift på disse i liten grad fører til uønskede vridninger i økonomien.

Eksterne effekter i form av skadelige miljøvirkninger bør også trekkes inn i vurderingen av finansieringen av støtten. I en situasjon hvor ikke alle miljøvirkninger er tatt hensyn til i form av avgifter eller reguleringer, kan en avgift på en vare som gir skadelige utslipp føre til lavere utslipp og dermed en samfunnsøkonomisk gevinst. Motsatt vil for eksempel en avgift på en vare som ikke medfører spesielle miljøvirkninger når den produseres eller konsumeres, men som har en vare som er et nært substitutt og som gir skadelige utslipp som ikke er behørig avgiftsbelagt, kunne gi økt miljøbelastning og dermed et samfunnsøkonomisk tap.

Til syvende og sist blir det et empirisk spørsmål hvilken finansieringsform for et tilskudd som gir lavest samfunnsøkonomiske kostnader (eller høyest samfunnsøkonomisk gevinst).

6.2.3 Risiko og forutsigbarhet

For investorene

Generelt er forutsigbare rammer viktige for investorer. For investeringsstøtte er dette i utgangspunktet mindre relevant, ettersom støtten er en engangsforetelse. Når en investor har fått tilsagn om støtte, har det ingen betydning om støttesatser eller lignende endres neste år.

Hypptive endringer i støttesatser og lignende kan imidlertid tenkes å ha betydning for timingen av investeringene. Dersom investorene forventer at støttesatsene vil stige, vil man utsette å søke om støtte i påvente av høyere satser. Motsatt vil de kunne framskyne investeringer hvis det forventes fall i satsene. For investeringer som krever lang planleggingshorisont, kan hypptive endringer og usikkerhet om fremtidig støtte være uheldig, og føre til at investeringer som er ønskelige fra samfunnets side, utsettes eller ikke gjennomføres i det hele tatt.

For energimyndighetene

Ettersom myndighetene fritt kan bestemme støttesatser og -omfang, vil risiko og problemer knyttet til forutsigbarhet sett fra deres side være liten. Sett fra energimyndighetenes side kan imidlertid risikoen være noe større, ettersom de er avhengige av Finansdepartementets, regjeringens og Stortingets aksept for å opprettholde en støtteordning.

Dersom hele eller deler av støtten finansieres i markeds gjennom påslag i nettariffer eller andre priser, kan svingninger i omsetningen av den aktuelle varen skape usikkerhet. Dette kan imidlertid kompenseres gjennom tilpassede bevilgninger over statsbudsjettet.

Som nevnt ovenfor er en risiko med investeringsstøtte er at den kan bidra til en rask etablering av prosjekter med delvis lav kvalitet. Det er også en risiko for myndighetene i forhold til måloppnåelse, dvs. hvor mye energi som til syvende og sist blir produsert. For noen anlegg vil det også være mulig å bruke andre energikilder enn de som klassifiseres som fornybare og grønne, og at den faktiske
produksjonen dermed ikke blir like ”grønn” som det ble forutsatt når investeringsstøtten ble innvilget. I dag er kontrakten mellom Enova og varmeaktøren utformet slik at støtten bare utbetales hvis et avtalefestet energiresultat (i dette tilfelles grønn varmeproduksjon) nås, og den som mottar støtte er pålagt å rapportere resultater i opp til ti år etter at investeringsprosjektet er ferdigstilt. Dette reduserer risikoen for at de støttede investeringsprosjektene ikke leverer tilstrekkelig med grønn varme.

6.2.4 Administrative kostnader

En ordning med investeringsstøtte krever en god del administrasjon fra myndighetenes side. Retningslinjer for støtten må utarbeides, og søknadene må vurderes i henhold til retningslinjene og prioriteres. Møter med søkerne og befaringer og lignende er ofte nødvendig. Administrasjon av en støtteordning kan kreve detalj- kunnskap om ulike teknologier m.v. som det kan kreve betydelig tid og ressurser å sette seg inn i. Når investeringen er gjennomført skal prosjektregnskapet kontrolleres før utbetaling av støtten.

Også for investorene krever søknad om støtte betydelig administrasjon. Søkerne legger gjerne betydelig arbeid i en søknad for å overbevise myndighetene om at deres prosjekt er godt og dermed støtterverdig. For noen potensielle søkere vil kostnadene knyttet til søkeprosessen opfattes som så høye at man ikke søker om støtte overhode. For eksempel viser en undersøkelse fra Norsk Solenergiforening at flere aktører i byggbransjen avstår fra å søke støtte fra Enova til installasjon av vannbaserte varmeproduksjonen i det man etter innsikt er usikkerheten knyttet til hvorvidt man får søkt støtte eller ikke. (Solgløtt, 2005).

Mest mulig ”automatiske” tilskuddsordninger, dvs. hvor man automatisk har krav på støtte dersom man oppfyller visse objektive kriterier, vil redusere administrasjonsbehovet. Slike ordninger vil imidlertid lett komme i konflikt med de ulike målene for ordningene, og dessuten kunne kreve svært god tilgang på kapital dersom ordningen er populær. Det er derfor mest realistisk å anta at de fleste støtteordninger vil kreve betydelig administrasjon både fra myndighetenes og søkernes side.

6.2.5 Omfang og egnethet

I ECON (2003b) ble det vurdert hvordan fjernvarmedistribusjon og andre kan kompenseres for et eventuelt bortfall av elavgift for all næringsvirksomhet, bl.a. gjennom investeringsstøtte. Vurderingene i ECON (2003b) er relevante også i forhold til problemstillingene i denne rapporten. Det ble vist til at investeringskostnadene for et fjernvarmeanlegg varierer fra 13-14 øre/kWh for anlegg som er basert på annet Brensel enn avfall, til knappe 30 øre/kWh for store avfallsforbrenningsanlegg. En investeringsstøtte på 15 prosent tilsvarer knappe 2 øre/kWh for de ”billigste” anleggene til drøyt 4 øre/kWh for store avfallsanlegg.

En investeringsstøtte tilsvarer 9,5 øre/kWh, som var nivået på elavgiften i 2003 og som tilsvarer anslagene for det framtidige nivået på elsertifikatprisen, vil

16 Generelt regner NFV med at 1/3 av totale kostnader for et fjernvarmeanlegg består av kapitalkostnader.
utgjøre fra 50 til 90 prosent av totale investeringskostnader. Så høye støttesatser vil være i strid med ESAs retningslinjer for miljøstøtte (maks 40 prosent), og gå langt ut over dagens støttesatser. Konklusjonen i ECON (2003b) var at det ikke vil være aktuelt å kun bruke investeringsstøtte som stimuli til nyinvesteringer, og at andre støtteformer, relatert til produksjonen og/eller reguleringsmessige tiltak, også vil også ha betydning for investeringsviljen.

Ifølge Enovas varmestudie er det ikke gitt at investeringsstøtte er det viktigste tiltaket for å øke mengden varmeleveranser basert på fornybar energi. Risiko-reducerende tiltak, som for eksempel garantier for framtidige inntektsstrømmer, kan være minst like viktige.
7 Støtte til varmeproduksjon

Produksjonsstøtte er alle former for støtte som gis basert på størrelsen på varmeproduksjonen. Grønne sertifikater er i så henseende også en produksjonsstøtte. Som påpekt i kapittel 4 kan myndighetene velge enten å bruke et system hvor man fastsetter prisen, og så får markedet bestemme hvor stor produksjonen blir, eller et system hvor man fastsetter størrelsen på produksjonen (volumet) og så bestemmer markedet prisen.\(^{17}\) Sertifikater er et eksempel på det sistnevnte. I dette kapitlet ser vi imidlertid på noen varianter av ”prisregulert” produksjonsstøtte: garanterte minstepriser, grønt energitilskudd, samt på anbudskonkurranser. Videre drøftes hvordan produksjonsstøtte for grønn varme kan utformes.

7.1 Ulike former for produksjonsstøtte

7.1.1 Garanterte minstepriser

Produksjonsstøtte kan utformes som en garantert pris hvor staten eller markedet dekker differansen mellom den løpende spotprisen i varmemarkedet (dvs. den såkalte el- eller oljeekvivalente prisen) og den garanterte prisen. Store deler av markedssikroen flyttes dermed fra produsentene til staten eller brukerne, ettersom produsentene får en garantert pris. Størrelsen på den totale støtten vil variere avhengig av prisutviklingen på alternative energikilder, dvs. i prinsippet el og olje.

Garanterte minstepriser for å støtte fornybar energi er blitt brukt i flere land, bl.a. i Tyskland, Østerrike, Frankrike og Spania. I Tyskland ble “Electricity Feed Law” (EFL) innført i 1991, og gjelder for fornybar kraft. Ifølge denne loven må kraftdistributøren kjøpe kraft fra fornybare kilder, og betale disse produsentene en gitt andel av sluttkomprisen på kraft.\(^{18}\) For vindkraftanlegg mindre enn 500 kW er andelen 90 prosent, dvs. at distributøren må betale disse anleggene 90 prosent av det private husholdnings betaler (eksklusive en skatt på 15 prosent). For store anlegg er andelen 65 prosent. Støtten finansieres gjennom en økning i sluttkomprisen, dvs. at det er brukerne av energien som betaler.

\(^{17}\) Volumbaserte systemer blir ofte vurdert som mer markedsorientert enn prisbaserte systemer, men dette er ikke nødvendigvis tilfelle – begge systemene kan være mer eller mindre markedsorienterte.

\(^{18}\) Obligatorisk kjøp av fornybar energi kalles iblant for REFIT (renewable energy feed-in tariffs).
Erfaringer

Erfaringer med garanterte minstepriser viser at disse kan være effektive for å få fart på utbyggingen av fornybar energiproduksjon, for eksempel har man hatt en forholdsvis stor utbygging både i Tyskland og Spania. Ulempen er at dette virkemidlet ikke nødvendigvis er kostnadseffektivt, og man har noen steder problemer med utbygging av mange dyre anlegg.Eksempler på dette er utbygging av vindkraft på steder hvor vindressursene egentlig er begrenset.

7.1.2 Tilskudd til produksjon

I forbindelse med et mulig bortfall av elavgiften for alt næringsliv lanserte Norsk Fjernvarmeforening ideen om et grønt energitilskudd, som skulle finansieres gjennom å øke påslaget på nett tariffen. Inntektene fra dette ville så bli fordelt tilbake til produsenter av grønn varme i form av et tilskudd basert enten på varmeleveranse ut fra anlegget eller leveranser til sluttførbruker. Fordelen med å legge det ved leveranse til sluttførbruker er at man dermed vil øke incentivene til å redusere svinn i distribusjonen.

I ECON (2003b) ble det regnet på hva et grønt energitilskudd på 9,5 øre/kWh til produsenter av grønn varme vil koste, se tabell 7.1, hvor beregningene for år 2004 og 2010 vises.

Tabell 7.1 Kostnader for grønt energitilskudd til fjernvarme på 9,5 øre/kWh. Millioner kr. 2004, 2010

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>All grønn fjernvarme</td>
<td>156</td>
<td>380</td>
</tr>
<tr>
<td>Eksisterende anlegg</td>
<td>119</td>
<td>343</td>
</tr>
<tr>
<td>Nye anlegg¹</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

¹ Vi antar at det tilkommer et likt antall TWh ny kapasitet hvert år slik at en i 2010 har 4 TWh fjernvarme basert på fornybare energibærere.

I Danmark får elproduksjon basert på vind, biobrensler, biogass, avfall og naturgass et såkalt pristillegg. Noen av pristilleggene gis som et konstant tillegg mens andre reguleres i forhold til markedsprisen, slik at summen av markedspris og pristillegg sikrer produsenten en fast avregning. Utformingen av og størrelsen på pristilleggene avhenger av brenseltype, anleggets størrelse, när det ble koplet til nettet, og hvor gammelt det er. Eksisterende desentrale anlegg basert på naturgass og avfall kan i tillegg få et elproduksjonstilskudd på opp til 0,10 DKK/kWh. Ordningen med pristilskudd er foreløpig godkjent av EU/ESA og gjelder frem til 2007.

7.1.3 Anbudskonkurranse

I en anbudskonkurranse utlyser myndighetene bygging og/eller produksjon av en gitt mengde fornybar energi, og de aktører som kan tilby dette til lavest støttebeløp vinner konkurransen. Anbudssystemet er et markedsorientert virkemiddel.

¹⁹ I Danmark har man valgt å støtte biobasert kraftproduksjon og ikke ren varmeproduksjon.
Likebehandling av ny fornybar varme og kraft

Anbudskonkurranser har bl.a. blitt brukt for utbygging av ny fornybar kraft i Storbritannia. Siden 1989 har ordningen “Non Fossil Fuel Obligation” (NFFO) eksistert, med den hensikt å støtte elektrisitetsproduksjon fra andre kilder enn fossile brenseler. NFFO består av en avgift på elektrisitetsprisen, som brukes til å finansiere støtten. Støtten til fornybar energi i NFFO-systemet er organisert i et anbudssystem, som utlyser "anbudsrunder". Produksenten med det laveste budet, dvs. laveste aksepterte pris pr. levert kWh får kontrakten. Gjennom systemet har myndighetene fordelt kontrakter på leveranser av kraft basert på fornybare kilder til priser som ligger over markedsprisen for kraft. Forutsetningene for anbuds-konkurransene har endret seg etter hvert, slik at det ikke er mulig å sammenligne resultatene fra de forskjellige rundene direkte. Den første runden ble gjennomført i 1989, og da fikk 9 prosjekter kontrakter på en pris lik £0.09/kWh for prosjektets livsengde. Den andre NFFO-runden, i 1991, resulterte i 49 vindkraftprosjekt til en kostnad på £0.11/kWh. Alle anbud med pris lik eller lavere enn £0.11/kWh ble akseptert, og mottok £0.11/kWh. Den tredje runden, i 1993, gav store pris-reduksjoner. I denne runden fikk alle tilbydere som ble akseptert den prisen de hadde tilbudt.

Erfaringer

I Storbritannia har man opplevd store kostnadsreduksjoner for produksjon av vindkraft på 1990-tallet, samtidig har man hatt en lav utbygging av vindkraft – til tross for meget store vindressurser. Dette er det motsatte av de erfaringene man har hatt i Tyskland med bruk av minstepriser. Det er derfor mulig at det er en trade-off mellom prisreduksjoner og spredning, alternativt ligger forklaringen i måten prisreduksjonen er oppnådd på. Anbudssystemet i Storbritannia har vært kritisert for å være meget usikkert, og karakterisert av stopp-start politikk. Mellom utlysingsrundene har det vært lange perioder med liten aktivitet innenfor planlegging og bygging av vindkraftanlegg, noe som har gjort det vanskelig å etablere effektive arbeidsforhold.

Et annet problem er at systemet har invitert til "spill": vindkraftteknologien har blitt billigere over tid og for en produsent som har fått tildelt et kontrakt vil det derfor være optimalt å vente så lenge som mulig med å realisere prosjektet. Dette problemet har blitt forsterket av at systemet ikke har hatt noen form for straff for ikke-installert kapasitet. En produsent som velger å bygge ut kapasiteten vil også kunne rammes av "winners curse", dvs. at man på forhand ikke vet hva kostnadene blir og at man kan risikere at den støtten som man får ikke viser seg å være tilstrekkelig for å sikre lønnsomhet i prosjektet.

Andre forhold NFFO-systemet har blitt kritisert for er at priskonkurransen har favorisert områder med best vindforhold. Dette er områder som ofte også er natur- perler. Dette viser et dilemma ved at de samlede virkemidlene ikke er perfekte: Et anbudssystem skal jo nettopp bidra til at de beste prosjektene realiseres først, men tilpasningen kan bli feil fordi de positive eksterne virkningene knyttet til vakker natur ikke er internalisert i markedet. Kritikken har også gått på at lokalt eide prosjekt har hatt en ulempe siden disse er dyrere. Begge disse forholdene har sannsynligvis ført til noe mer lokal motstand mot vindkraft enn i Danmark og Tyskland. Gjennom ulike former for REFTs (renewable energy feed-in tariffs) har Tyskland og Danmark etablert mer stabile markedsforhold for vindkraftanlegg, noe som har økt installert kapasitet i disse landene. Storbritannia har på bakgrunn av de dårlige erfaringene med anbudssystemet valgt å gå over til elsertifikater.

7.2 Mulig produksjonsstøtte for grønn varme

Produksjonsstøtte for grønne varmeleveranser kan utformes på forskjellige måter. Et viktig moment er hvem som mottar støtten, om det skal være produsenten av energikilden og/eller varmeprodusenten. Hvem som får støtten vil først og fremst være et spørsmål om hensiktsmessighet, dvs. hvor det er "enklast" å administrere og kontrollere støtten. Incentivvirkningene og fordelingen av støtten i hele verdikjeden vil sannsynligvis ikke påvirkes stort av hvem som får støtten, som vist for varmesertifikater er det tilbuds- og etterspørselslastisitetene som avgjør hvem som "nyter godt" av støtten.

Ettersom varme kan produseres på mange forskjellige måter, vil det i mange tilfeller være mest fornuftig å gi støtten til produksjonen, eller omsetningen, av biobrensel – noe som vil "forplante" seg til varmeprodusentene i form av billigere innsatsvarer (inkludert både fjernvarmeanlegg og de som selv produserer varmen), og dermed økt lønnsomhet. Støtten må også inkludere importører av biobrensel, ettersom målet er å sikre en gitt mengde grønn varmeproduksjon og ikke å gitt mengde norskprodusert biobrensel. Det kan videre diskuteres hvorvidt støtten bør gis til produsentene/importørene av råvaren eller det foredlede brensel. Administrasjonskostnadene taler for at man gir støtten til produsentene/importørene av foredlet brensel, ikke minst siden det er færre aktører i dette markedet. I et slikt system vil imidlertid uforedlet biobrensel, som ved, falle utenfor. Hvor problematisk dette er, avhenger av hvor stor andel av den totale biobaserte varmeproduksjonen som er basert på uforedlet brensel. Jo mindre andelen er, dess mindre er det samfunnsøkonomiske tapet ved ikke å inkludere dette brensel.

For avfall vil det imidlertid ikke være aktuelt med produksjonsstøtte til innsatsvaren, da dette vil komme i direkte konflikt med avfallspolitikken. For å fremme økt energigjenvinning av avfallet kan det i stedet være aktuelt med en støtte pr. levert energi som er basert på ikke-fossil avfall. Når sluttbehandlingsavgiften for forbrenning av avfall, som hadde en implisitt støtte til energigjenvinning i form av lavere avgift, ble erstattet med en utslippsavgift, var intensjonen å gi incentiver til energigjenvinning gjennom et tilskudd pr. levert kWh. Dette forslaget ble imidlertid stoppet i ESA, begrunnet med at en slik støtte vil være konkurransevridende når ikke andre energiformer får tilsvarende støtte. Hvorvidt ESA vil godkjenne en slik ordning når andre former for biobrensel får produksjonsstøtte, er et åpent spørsmål.

For avfall vil det imidlertid ikke være aktuelt med produksjonsstøtte til innsatsvaren, da dette vil komme i direkte konflikt med avfallspolitikken. For å fremme økt energigjenvinning av avfallet kan det i stedet være aktuelt med en støtte pr. levert energi som er basert på ikke-fossil avfall. Når sluttbehandlingsavgiften for forbrenning av avfall, som hadde en implisitt støtte til energigjenvinning i form av lavere avgift, ble erstattet med en utslippsavgift, var intensjonen å gi incentiver til energigjenvinning gjennom et tilskudd pr. levert kWh. Dette forslaget ble imidlertid stoppet i ESA, begrunnet med at en slik støtte vil være konkurransevridende når ikke andre energiformer får tilsvarende støtte. Hvorvidt ESA vil godkjenne en slik ordning når andre former for biobrensel får produksjonsstøtte, er et åpent spørsmål.

I de tilfeller fjernvarmeanleggene bruker uforedlet biobrensel som ikke omfattes av produksjonsstøtten til foredling av biobrensel, vil det også være aktuelt å inkludere denne produksjonen i et støttesystem.

For ikke-brenselbaserte varmeteknologier vil produksjonsstøtte sannsynligvis ikke være et like velegnet virkemiddel. Her vil støtten i mange tilfeller uansett måtte utbetales som en form for engangsstøtte, for eksempel ved investering i varme-
Likebehandling av ny fornybar varme og kraft

pumpen eller solfangeren. Engangsbeløpet kan imidlertid være basert på forventet produksjon (som foreslått for sertifikater) istedenfor å utgjøre en gitt prosent av investeringsbeløpet. Alternativet til engangsstøtte er en årlig utbetaling av støtte, men dette vil sannsynligvis gi uhensiktsmessig store administrasjons- og kontroll-kostnader.

7.3 Produksjonsstøttens egenskaper

7.3.1 Incentiv til produksjon av varme

Produksjonsstøtte gir incentiver til drift, dvs. produksjon av varme. Erfaringer med ulike former for produksjonsstøtte viser at de oppmuntrer varige prosjekter med gode driftsegenskaper. Produksjonsstøtte er også mer teknolognøytralt enn investeringsstøtte – så lenge teknologien klassifiseres som grønn er det opp til utbygger/produsent å velge løsning. Ved investeringsstøtte kan den offentlige myndigheten i større grad detaljstyre hvilke teknologier som velges.

7.3.2 Finansiering av støtten

Det mest nærliggende er å bibeholde dagens ordning med finansiering via påslaget på nettariffen. Det kan imidlertid diskuteres hvorvidt elforbrukerne skal betale hele ordningen med støtte til grønn varme, men dette faller utenom vår drøfting.

Et alternativ for avfallsbasert energi er å bruke inntektene fra utslippsavgiften til å dekke støtten til levert energi, etter samme modell som den svenske NOX-avgiften. Inntektene fra denne avgiften, som omfatter alle forbrenningsanlegg som produserer energi som brukes til oppvarming av bygninger, elproduksjon eller i industrielle prosesser, betales tilbake til anleggene basert på hvor mye energi som nyttiggjøres. Dette betyr at anlegg med lave utslipp i forhold til energiproduksjonen blir netto mottakere, mens anlegg med høye utslipp i forhold til energiproduksjonen blir netto betalere. Å tilbakeføre avgiften til anleggene ble ansett som nødvendig for å få aksept for avgiften blant anleggseierne.

7.3.3 Risiko og forutsigbarhet

Er støtten finansiert direkte av staten, er den utsatt for politisk risiko og blir som regel vurdert som forholdsvis usikker. Hvor stor usikkerheten er, vil avhenge av utføringen av støtten og hvor langt frem i tid staten har forpliktet seg til å betale ut støtten. En støtte finansiert i markedet gjennom for eksempel et påslag i nett-tariffen framstår som mindre usikker sett fra aktørenes side, ettersom denne ikke vil være like utsatt for kutt gjennom de årlige budsjettprosessene.

I et system med garanterte minstepriser er det ikke noen usikkerhet for produsenten med hensyn til hvilken totalpris man vil få, mens man i et system med fast produksjonsstøtte har en ikke ubetydelig usikkerhet i totale inntekter. Med fast produksjonsstøtte vil man kunne oppleve situasjoner hvor varmeprisen + støtte ikke dekker de marginale kostnadene (hvis varmeprisen blir tilstrekkelig lav) og situasjoner hvor de marginale kostnadene mer enn vel dekkes og man egentlig får en for høy støtte. Hvis en fast produksjonsstøtte velges, må man
derfor kunne gå inn og justere støttesatsen underveis hvis varmeprisen endrer seg vesentlig over en lenger periode.

7.3.4 Administrative kostnader
Adminstrasjonskostnadene for produksjonsstøtte henger bl.a. sammen med hvor ofte støtten betales ut. Det vil her være en aveining mellom antall utbetalinger pr. år og støttemottakerens likviditet.

Gjennom elektronisk rapportering av solgte mengder biobrensel, alternativt energibærere og varmeproduksjon for fjernvarmeanlegg, vil det være mulig å holde nede administrasjonskostnadene.

Kontrollkostnadene kan ventes å være like store som i et system med varme-sertifikater, og avhengig av antall aktører som mottar støtten.

7.3.5 Omfang og egnethet
Når det gjelder produksjonsstøtte spiller omfanget av markedet ikke samme rolle som for sertifikater, ettersom støtten ikke er en pris som kan “manipuleres” på samme måte som en sertifikat pris.
8 Hvilket virkemiddel er mest hensiktsmessig?

I dette kapittel sammenligner vi de forskjellige virkemidlene som er blitt beskrevet i kapittel 5-7, nemlig grønne sertifikater, investeringstilskudd og produksjonstilskudd. Formålet med sammenligningen er å vurdere hvilket virkemiddel som er mest effektivt når målet er å oppnå uendrede rammevilkår for grønn varme i forhold til grønn el. Vi drøfter ikke hvilket virkemiddel som er samfunnsøkonomisk mest optimalt for å nå myndighetenes mål om bruk av varme.

De virkemidlene som vurderes er:

- Varmesertifikater (enten helt frittstående eller koplet til elsertifikater)
- Økt investeringsstøtte i forhold til dagens støtteandel
- Støtte til varmeproduksjon, med et støttenivå som følger sertifikatprisen.
 Støtten vil gis for omsatt biobrensel eller levert varme. Støtten omtales som produksjonsstøtte.

De kriterier som vi bruker er:

- Kostnadseffektivitet
- Måloppnåelse
- Administrative kostnader
- Risiko og forutsigbarhet for aktørene
- Incentiver til hhv. investeringer, teknologivalg og driftsbeslutninger.

8.1 Produksjonsbasert støtte er mer kostnadseffektiv enn investeringsstøtte

Alle virkemidlene vil i utgangspunktet gi incentiver til kostnadseffektiv drift i den forstand at produksjonen av varme skjer mest mulig effektivt. Investeringsstøtte vil ikke gi noen direkte incentiver til kostnadseffektiv drift, men heller ikke incentiver til ikke-drift – når anlegget vel er bygget vil det i de aller fleste tilfeller være mer lønnsomt å drive det enn å la det stå. Investeringsstøtte kan imidlertid stimulere til unødig kapitalintensive løsninger. God kunnskap om kostnader og teknologier hos de som administrerer støtten kan imidlertid motvirke dette.
Et sertifikatmarked kan, som vi har vist, gi noen uheldige incentiver til investeringer i anlegg med høy virkningsgrad, og til bruk av brenseler med dårlig kvalitet dersom sjablongberegnings benyttes i stedet for faktiske målinger og avregninger. Dette kan en i noen grad unngå ved å gi produksjonsstøtte, men dersom denne støtten også baseres på sjablongmessige avregninger vil de samme problemene oppstå også her. Forskjellen er at i et sertifikatsystem er det kWh som er måleenheten, mens en produksjonsstøtte kan ha en vekt- eller volumenhet som måleenhet. Men hvis det er et poeng at produksjonsstøtten skal være mest mulig lik sertifikatprisen må det skje en omregning fra tonn eller volum til kWh basert på en sjablong.

Kostnadseffektiviteten vil også kunne variere mellom ulike utformingar av de tre typer av tiltak som er diskutert. For eksempel vil ordninger som er markedsbaserte som regel være mer kostnadseffektive enn andre typer tiltak. Samtidig kan den markedsbaserte sertifikatordningen være lite kostnadseffektiv hvis konkurransen i markedet ikke fungerer. I kapittel 5 viste vi at dette kan være en utfordring i varmemarkedet, hvor det er en reell risiko for at noen aktører vil kunne få markedsmakt og dermed påvirke prissettingen på sertifikatene.

Vi konkluderer med at en sertifikatordning som til stor grad er basert på måling av faktisk varmebruk og hvor ingen aktør har markedsmakt, sannsynligvis er best egnen til å gi kostnadseffektive løsninger. Hvis innslaget av sjablongberegnings og markedsaktor tilvirket produksjonsstøtte være mer kostnadseffektiv. Samtidig er forskjellen mellom produksjonsstøtte og en sertifikatordning ikke nødvendigvis særlig stor når det gjelder å realisere kostnadseffektive løsninger.

8.2 Sertifikater sikrer målet om like rammevilkår

Investeringsstøtte og produksjonsstøtte vil i ulik grad bidra til måloppnåelse, og likeledes vil utformingen av produksjonsstøtten ha betydning. Investeringsstøtte kan bidra til at anlegg bygges ut med en kapasitet tilsvarende målene, men det gir ikke noen garanti for at produksjonen blir som ønsket. Som nevnt oven vil både sertifikater og produksjonsstøtte gi incentiver til faktisk produksjon av grønn varme. Utøvers et ved etableringen av en sertifikatordning setter et samlet mål for hvor mye grønn varme som skal produseres, vil denne ordningen i utgangspunktet gi sikrere måloppnåelse i form av produsert mengde enn et produksjonstilskudd. Ved sistnevnte vil man i større grad være avhengig av prøving og feiling med hensyn til størrelsen på tilskuddet for å oppnå et bestemt mål, avhengig av hvordan aktørene reagerer.

I praksis er imidlertid en sertifikatordning også avhengig av at markedet responderer på kravene, og at man klarer å framskaffe tilstrekkelige mengder grønn varme til realistiske sertifikatpriser. Dersom en har et øvre tak for sertifikatprisen vil dette virkemidlet i praksis kunne framstå som relativt like produksjonstilskudd. Analysen har også vist at et sertifikatmarked kan gi uheldige incentiver med hensyn til produksjon og investeringer bl.a. dersom utstedelsen av sertifikater er basert på sjablongmessige faktorer og ikke måling av faktisk produksjon.
Man kan imidlertid stille spørsmål om måloppnåelsen ved markedsbaserte tiltak. Det er mulig at det er en trade-off mellom måloppnåelse og kostnadseffektivitet. Det blir da til syvende og sist et politisk spørsmål hvorvidt man ønsker å prioritere oppnåelsen av en konkret målsetting eller at tiltak som settes i verk er mest mulig kostnadseffektive.

Når utgangspunktet for virkemiddelbruket er å gi grønn varme uendrede ramme­betingelser i forhold til grønn el, uten at man nødvendigvis har noe kvantitativt mål for produksjon av grønn varme, vil virkemidlens egenskaper med hensyn til måloppnåelse framstå som motsatt av droftingen ovenfor. Da vil et produksjons­tilskudd for grønn varme kunne utformes slik at det relativt nøyaktig gir samme ramme­betingelser som for grønn el, mens en i et system med grønne varme­sertifikater atskilt fra sertifikatmarkedet for grønn el ikke vet hva sertifikatprisen (støtten) blir. Sertifikatprisen for varme kan bli både større eller mindre enn sertifikatprisen for el. Et integrert sertifikatmarked for grønn el og varme vil derimot automatisk gi samme tilskudd til grønn el og varme. Et system hvor markedene er separate, men hvor det er mulig å koble dem sammen, enten gjennom ”bytte” av sertifikater eller en form for samordning av sertifikatprisene, vil kunne gi tilnærmet like ramme­betingelser. En slik ordning vil imidlertid i stor grad ligne på en produksjonsstøtte for varme som er koblet opp mot el­sertifikatene.

Vi vil konkludere med at et integrert sertifikatmarked for grønn el og varme i utgangspunktet vil gi best måloppnåelse når målet er å sikre ny fornybar varme uendrede ramme­betingelser i forhold til grønn el. Også et produksjons­tilskudd vil kunne gi samme resultat, men krever at tilskuddet løpende tilpasses nivået på sertifikatprisen for grønn el.

8.3 Støtte til varmeproduksjon har de laveste administrative kostnadene

Alle virkemidlene vil medføre administrative kostnader både hos myndighetene og markedsaktørene. Grønne sertifikater vil kreve kostnader i form av god­kjenning av anlegg som skal omfattes, kontroll og løpende administrasjon knyttet til kjøp og salg av sertifikater. Disse kan bli betydelige, særlig dersom det er mange aktører i markedet med ulike typer leveranser av varme og bruk av eget brensel m.v. Noen av de samme administrasjonskostnadene for myndighetene vil oppstå også i et system med produksjonstilskudd, men dette systemet kan gjøres administrativt enklere ved at støtten kan begrenses til kun å støtte produksjon basert på biobrensel og energigjenvinning. For den enkelte markedsaktøren vil de administrative kostnadene muligens være noe høyere for sertifikater enn for produksjonsstøtte. Ved en sertifikatordning vil de måtte håndtere salg og kjøp av sertifikater, mens de ved produksjonsstøtte må rapportere produksjonsmengder eller tilsvarende til myndighetene. Størrelsen på aktørenes administrasjons­kostnader vil avhenge av hvor ofte sertifikatene og produksjonsstøtten avregnes. Et annet moment er at produksjonsstøtten sannsynligvis vil kunne omfattet færre aktører enn et sertifikatsystem.

Investeringsstilskudd krever også en god del administrasjon fra både myndighetene og søker sin side, men denne vil være begrenset til en relatativt kort periode rundt planlegging og gjennomføring av investeringene sammenliknet med de øvrige
ordningene som krever løpende administrasjon gjennom hele prosjektets levetid. Gjennomgangen viser at selve søknadsprosessen og den dokumentasjonen som kreves kan være et betydelig hinder for at en del aktører ikke søker om støtte. For å få sertifikatrett ellerrett til å motta produksjonsstøtte vil man også måtte søke om godkjenning, men det er grunn til å tro at denne søknadsprosessen vil være mindre omfattende enn for en søknad om investeringstilskudd. I dag krever Enova en omfattende dokumentasjon av prosjektene, bl.a. kostnads- og finansieringsplan, som det sannsynligvis ikke vil være behov for i et system med sertifikater eller produksjonsstøtte.

På denne bakgrunnen vil vi konkludere med at et produksjonstilskudd sannsynligvis vil gi lavest administrative kostnader av de tre virkemidlene.

8.4 Investeringsstøtte er minst risikoutsatt for investorene

Alle virkemidlene er utsatt for politisk risiko sett fra aktørenes side i den forstand at de kan bli endret og avviklet over tid. Investeringsstøtten er i denne forbindelse minst utsatt, ettersom endringer har liten betydning når aktørene først har fått tilsagn om støtte. For større prosjekter med lang planleggings- og behandlingstid kan imidlertid kortsiktige endringer være viktige. Vi tror også at en sertifikatordning løper mindre risiko for politiske endringer enn en produksjonsstøtte. Sistnevnte vil, særlig hvis den finansieres over statsbudsjettet, være utsatt for endringer gjennom de årlige budsjettprosessene. Finansieres støtten i markedet, for eksempel ved et påslag i overføringstapen for el, kan det være en viss risiko knyttet til inntektsgrunnlaget dersom det ikke er bygget opp noen buffer eller lignende for å utjevne svingninger som følge av endringer i elforbruket.

Med hensyn til kommersiell risiko vil en sertifikatordning sannsynligvis gi større risiko enn en produksjonsstøtte. Garanterte minstepriser eller grønt energitilskudd garanerer (dersom en ser bort fra politisk risiko) en fast pris for produksjonen, mens sertifikatprisen vil avhenge av utviklingen i markedet og kan svinge betydelig. Anbudskonkurranse gir også sikkerhet med hensyn til støttenivået for de anbudene som aksepteres, men har en ulempe i at man ikke kjenner kostnadene og at støttenivået kan vises seg å være for lavt for å sikre en akseptabel lønnsomhet.

Vi konkluderer med at investeringsstøtte antakelig er minst utsatt for risiko sett fra markedsaktørenes side. En produksjonsstøtte finansiert i markedet vil også være relativt lite utsatt for både politisk og markedsmessig risiko.

8.5 Produksjonsbasert støtte er mer teknologinøytral enn investeringsstøtte

De produksjonsrettete virkemidlene (grønne sertifikater og produksjonsstøtte) vil i større grad enn investeringsstøtte gi incentiver til drift. Disse støtter.formene kan også lettere utformes slik at de er teknologinøytrale og i større grad lar produ-senten velge teknologi etter en egen vurdering av hva som er mest egnet. Investeringsstøtte krever at støttemyndigheten er godt oppdatert på teknologi-utviklingen for å unngå innlåsning ved eksisterende teknologier.
Ulike støtteformer gir ulike incentiver til henholdsvis investeringer, teknologier og drift og hvilken støtteform som skal velges vil avhenge av hvilken av disse faktorene som tillegges størst vekt. Hvis formålet er teknologiutvikling, er det sannsynligvis best med spissede programmer, som inkluderer en form for investeringsstøtte eller støtte til markedsintroduksjon. I dag har Enova dels et eget program for teknologiintroduksjon og en pilotsatsing sammen med Norges forskningsråd for utvikling og spredning av innovative energiløsninger. Hvis formålet er mest mulig investeringer er investeringsstøtte mest velegnet. Vi legger imidlertid til grunn at det viktigste formålet vil være produksjon av grønn varme, og følgelig er de to formene for produktionsstøtte mest velegnet.

8.6 Enten støtte til varmeproduksjon eller felles el- og varmesertifikater

I tabell 8.1 har vi rangert de tre typene av virkemidler i forhold til de valgte kriteriene. Vi har her forutsatt at ordningene er utformet slik at de omfatter like store deler av varmemarkedet. Generelt kan en si at jo større del av markedet som omfattes av virkemidlet dess mer kostnadseffektivt vil det være, ettersom det er større sannsynlighet for at de billigste prosjektene omfattes av ordningen jo flere prosjekter som er med. De administrative kostnadene vil imidlertid kunne øke jo flere prosjekter eller aktører som omfattes av virkemidlet.

| Kriterium: | Grønne varmesertifikater
til grønn varme | Investeringsstøtte | Støtte til varmeproduksjon |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostnadseffektivitet</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Måløppnåelse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Produksjon</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>- Like rammer</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Administrative kostnader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Myndigheter</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>- Aktørene</td>
<td>2</td>
<td>2-3</td>
<td>1</td>
</tr>
<tr>
<td>Risiko og forutsigbarhet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Politisk</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- Markedsmessig</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Incentiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Investeringer</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>- Teknologivalg</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- Drift</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1 Forutsetter en ordning hvor både sjablonberegninger og måling brukes.
2 Gitt at markedet ikke er integrert med elsertifikatmarkedet. Hvis dette er tilfelle vil varmesertifikater kunne være mer kostnadseffektive enn produksjonsstøtte.
3 Gitt at markedet ikke er integrert med elsertifikatmarkedet. Hvis dette er tilfelle vil dette i større grad gi like rammevilkår enn produksjonsstøtte.

Ut fra en samlet vurdering synes produksjonsstøtte, som følger sertifikatprisen, å være det mest hensiktsmessige virkemidlet for å sikre ny fornybar varme
uendrede rammebetingelser i forhold til grønn el ved innføring av et elsertifikatmarked. Dette er under forutsetning at sertifikatmarkedet for varme ikke kan integreres i elsertifikatmarkedet. I tilfelle et integrert sertifikatmarked er en reell mulighet, snus konklusjonen slik at varmesertifikater er mer hensiktsmessig for å sikre uendrede rammevilkår for grønn varme i forhold til grønn el.
Referanseliste

Likebehandling av ny fornybar varme og kraft
VEDLEGG: Det australske sertifikatsystemet

”Office of the Renewable Energy Regulator” er etablert med oppgave å sikre at betingelse knyttet til ordningen blir oppfylt, inkludert håndheving av loven gjennom straffeutmåling og gjennomføring av revisjoner.

Fornybare energisertifikater (RECs)

Produsenter av ny fornybar energi kan få tildelt omsettelige elsertifikater for den sertifikatberettigede delen av produksjonen. Det tildeles et sertifikat pr. MWh fornybar produksjon. Sertifikatene kan selges uavhengig av den fysiske elektrisiteten.

For å bli sertifikatberettiget må kraftprodusenten oppfylle følgende vilkår:

- Anlegget må være tatt i drift etter 31. desember 1996, eller, hvis igangsatt før dette dato, ha økt produksjonen over den gjennomsnittlige historiske produksjonen eller startet med produksjon basert på fornybare kilder etter dette dato;
- Bruke en eller flere sertifikatberettigede energikilder i kraftproduksjonen;
- Ha fått og oppfylt alle relevante konsesjoner for et kraftanlegg;
- Være i stand til å måle energiproduksjonen; og
- Selge elektrisiteten til en eller leverandør eller en enkeltbruker.

Følgende energikilder er sertifikatberettigede i MRET:

- Vannkraft;
- vindkraft;
- solenergi;
- bagasse (sukkerrørsavfall);
- svartlut;
- skogsavfall;
- energigrøder;
- åkeravfall;

våtorganisk avfall;
• deponigass;
• forbrenning av husholdningsavfall;
• kloakkgass;
• geotermisk energi;
• bølgekraft;
• oseankraft;
• tidevann; og
• ”hot dry rocks”.

Soloppvarmde varmtvannsberedere kan inkluderes i ordningen hvis installasjonen gir en positiv klimagasseeffekt.

Fornybare installasjoner som ikke er koplet til et nett vil også kunne tildeles sertifikater, dvs. at sertifikatretten ikke avhenger av netttilkoping.

Fossile brenser, og avfall basert på fossile produkter, er ikke sertifikatberettigede, inkludert: metan og andre gasser fra kullgruve, andre kull eller naturgassbaserte produkter, spillvarme fra kraftvarme produksjon, elproduksjon fra kraftvarme-produksjon basert på fossile brenser, og ikke-biomassebaserte komponenter ved avfallsforbrenning.

Erfaringer så langt

Det har nylig blitt gjennomført en evaluering av MRET, og i forbindelse med denne ble målet for 2010 stadfestet.22 I evalueringen gransket man en rekke tekniske problemstillinger vedrørende akkreditering av ulike fornybare energikilder, og da spesielt biomasse. Resultatene fra evalueringen er i kort:

• Frem til august 2003 hadde MRET gitt et signifikant bidrag til ny fornybar energiproduksjon, og 190 kraftanlegg var akkreditert. Drøyt halvparten av disse hadde blitt godkjent etter at MRET ble iverksatt. MRETs midlertidige mål for de to første årene var nådd med god margin, og det var ikke noen tegn til at de pliktige partene ikke hadde oppfylt sine krav.

• Gjennomsnittlig sertifikatpris har ligget rundt A$37-38 (tilsvarende 180-190 kr). Dette betyr at den implisitte subsiden til fornybar kraftproduksjon er omtrent A$37 pr. MWh.

• Veksten i fornybar energiproduksjon har primært kommet i form av vannkraft og soloppvarmde varmtvannsberedere. Samtidig har det vært en sterk vekst i vindkraft, hvor det var veldig få anlegg før ordningen ble iverksatt. Biomassebasert elproduksjon, inkludert bagasse, har ikke vært så viktig som man trodde det ville bli før MRET ble iverksatt. Tiltaket har bare hatt en marginal effekt på bruken av solceller, og ingen sertifikater har blitt tildelt skogsavfall fra urskog.

• Beregninger viser at det har blitt gjennomført investeringer til en verdi på over A$900 millioner, og med ytterligere A$1 milliard i pipeline.

• Det er forventet at det allerede i 2007 vil finnes tilstrekkelig med kapasitet for å nå målet om 9,5 TWh i 2010. En konsekvens av dette er at investeringene er forventet å falle kraftig etter 2007.

• En annen grunn til at investeringene er forventet å falle etter 2007 er at de aller fleste prosjekter har høye investeringskostnader og krever en inntjeningsperiode på minst 15 år. I dagens ordning vil det ikke tildelas sertifikater etter 2020, dvs. at for prosjekter som settes i drift i 2007 eller senere vil ikke sertifikatperioden dekke hele inntjeningsbehovet.

En utvidelse av målene i MRET (dvs. utover 9,5 TWh, og utover år 2020) er under debatt i Australia. Tilhengerne argumenterer med at det er nødvendig å stimulere pågående investeringer i fornybare energiteknologier, for at på denne måten redusere CO₂-utslippene. Motstanderne argumenterer med at MRET er et forholdsvis dyrt tiltak for å redusere CO₂ sammenlignet med andre typer av tiltak.

Evalueringskomiteen anbefalte en gradvis økning i målene for MRET frem til 20 TWh i 2020. Den sittende regjeringen har, så langt, bare stadfestet målet på 9,5 TWh i 2010 og ”will move to improve the operational and administrative efficiency of the scheme”. Regjeringen argumenterer med at det er viktigere å se på tekniske og regulatoriske barrierer for spredning av fornybar energiteknologi enn å øke den generelle subsidien som ligger implisitt i MRET, og som er beregnet til å utgjøre A$5 milliarder i 2020 gitt en målsetting på 20 TWh som foreslått av evalueringskomiteen.23

Evalueringen foreslår også en rekke endringer i hvilke energikilder som skal være sertifikatberettigede, med fokus på behandlingen av solenergi og biomasse.

Behandling av solenergi

MRET har gitt en signifikant økning i bruken av sol oppvarmede varmtvannsberedere (solar water heaters, SWH) og, om enn i mindre omfattning, små elgeneratorer (small generation units, SGU).

Innenfor MRET defineres en fornybar elgenerator som en SGU hvis den er basert på vannkraft, solenergi eller vindkraft, har en kapasitet på mindre enn 10 kW, og generer maks 25 MWh elektrisitet pr. år.

Frem til 18. august 2003, hadde 145 små generatorer (sol og vind) og omtrent 43 000 solbaserte varmtvannsberedere blitt akkrediteret for sertifikater.

Spesielle ordninger innenfor MRET, som innebærer forskuddsutbetaling, under-letter innkjøpene av småskala energienheter.

Solbaserte varmtvannsberedere

Solbaserte varmtvannsberedere skiller seg ut fra de andre MRET-teknologiene ettersom de ikke genererer elektrisitet. Varmen absorberes i en solfangere og distribueres ved hjelp av et overføringsmedium (vann) til oppvarmingsformål. De kombineres som regel enten med gassfyrte eller elektriske varmtvannsberedere, som brukes som back-up slik at ikke varm vannet svikter hvis solvarmen ikke er sterk nok.

Grunnen til at disse varmtvannsberedene er inkludert i MRET er at nyinstallerte anlegg som erstatter et elektrisk anlegg også vil erstatte den elektrisitet som ville ha blitt brukt hvis det elektriske anlegget hadde blitt videreført. Solbaserte varmtvannsberedere tildeles sertifikater ved installasjonen. Beregningen av hvor mange sertifikater som tildeles er forholdsvis komplisert, og avhenger av faktorer som plassering av systemer og type av varmtvannsbereder. En solbasert varmtvannsbereder kan få tildelt mellom 10 og 64 sertifikater.

For at en solbasert varmtvannsbereder skal være berettiget til sertifikater må den være installert etter 1. april 2001, og enten:

- erstatte en eksisterende elektrisk varmtvannsberedere som har vært montert på samme sted i minst et år; eller
- erstatte en solbasert varmtvannsberedere med elektrisk hjelpemotor som har vært montert på samme sted i minst 1 år; eller
- installeres i en ny bygning; eller
- være den første installasjonen av en varmtvannsbereder i en eksisterende bygning.

Solopppvarmede varmtvannsberedere som erstatter varmtvannsberedere basert på gass eller et annet brensel er ikke sertifikatberettigede.

Sertifikater for solbaserte varmtvannsberedere kan bare kreves en gang, og tildelningen tilsvarer ti års fortrengning av elektrisitet. Sertifikatene må kreves i løpet av 12 måneder fra installasjonsdato.

Små generatorer

Små elgeneratorer som er basert enten på solceller, vannkraft eller vindkraft kan få tildelt sertifikater etter spesielle regler. Disse enhetene får maksimalt tildelt 25 sertifikater pr. år, dvs. at man forutsetter at de vil generere 25 TWh elektrisitet. Små enheter med større elproduksjon enn 25 TWh må søke om å bli kreditert som kraftanlegg, og måle faktisk produksjon, for å få sertifikater for produksjonen som overstiger 25 TWh.

I følge industrien har markedet for solbaserte varmtvannsberedere vokst med 30 prosent pr. år etter at MRET ble iverksatt, fra 19 000 til 33 000 systemer.

24 *Kilder: MRET Review.*
Frem til august 2003 var det bare registrert 145 småskala enheter, hvorav alle unntatt fire var solcelleanlegg. Flere av informantene i evalueringen av MRET oppga at MRET ikke hadde vært en signifikant drivkraft verken for småskala solcelleanlegg eller SGU markedet, ettersom beregningsmetoden ikke gir tilstrekkelige incentiver til å skape sertifikater.

Flere ulike måter å forbedre MRET-ordningen for solcelleindustrien ble diskutert i evalueringen. Evalueringskomiteen anbefalte å gi små solcelleanlegg sertifikater i 15 år, og å øke terskelverdien for kapasiteten til 100 kW. Evalueringskomiteen argumenterte også for at reguleringen av solbaserte varmvannsberedere var alt for komplisert, og at alle sertifikatene burde tildeles direkte ved installasjon. Begge disse anbefalingene har blitt vedtatt og gjennomført.25

Behandling av biomasse

Hvorvidt skogsavfall fra urskog egentlig burde være sertifikatberettiget og hvordan annet skogsavfall burde bli regulert var viktige spørsmål som ble behandlet i evalueringen. Miljøverngrupper har uttrykt bekymringer i forhold til at skogsavfall fra urskog inngår i ordningen, samtidig som skogseiere og andre interesserer støttet en videreføring av sertifikatretten. Evalueringen presenterte to mulige måter å løse dette på: 1) utelukke skogsavfall fra urskog fra listen over fornybare energikilder, 2) beholde skogsavfall fra urskog, men å skille det fra annet sertifikatberettiget skogsavfall. En ekspertpanel som skal drøfte hvordan skogsavfall fra urskog bør behandles i MRET er under etablering.

Evalueringskomiteen anbefalte videre at all biomasse fra plantasjer burde være sertifikatberettige
